The tool of thought for expert programming

Dyalog” for Windows

Release Notes

Dyalog Limited

Grove House
Lutyens Close
Chineham Court
Basingstoke
Hampshire, RG24 8AG
United Kingdom

tel: +44 (0)1256 338461
fax: +44 (0)1256 316559
email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2006

‘ i T

ﬁ
o o,
—

— =,

mailto:support@dyalog.com
http://www.dyalog.com

Copyright © 1982-2006 by Dyalog Limited.

All rights reserved.

Version 11.0.1

First Edition September 2006

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited, Grove House, Lutyens Close, Chineham
Court, Basingstoke, Hampshire, RG24 8AG, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:

Intel, 386 and 486 are registered trademarks of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.
POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

SQAPL is copyright of Insight Systems ApS.

The Dyalog APL True Type font is the copyright of Adrian Smith.

TrueType is a registered trademark of Apple Computer, Inc.

UNIX is a trademark of X/Open Ltd.

Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Contents iii

Contents

070 1 (=T3P iii
O o N N 3 G B -1 1 - - | T 1
Interoperability and Compatibilitycccvveieiiiiieiiiiiieiriiie e e 1
Improved Workspace Management..............eeeeeuvireeriuiieeiiiieeeeiieeeesreeeeeereeeesenneeeseneeas 5
NUMDBET CONVETSION «....eentiieniiieiiiieeitie ettt ettt ettt e st et e et e sebee st e e ebeeesbeeesabeesebeesnne 8
Changes t0 YJCOPYuviiiieiiiie ettt ettt e e et e e e eabeeeessaaeeeensseeeennnns 10
Deferred Prototype GENErationceccvveeeiiiieeeeiieeeeeireeeesreeeeenreeessenneeesssneeesnsnns 12
MatChing REfS.......oiiiiiiiiiiiiiie et ettt e e e e tbe e e seenaeeeensreeeennnns 13
Changing Name-Class 0n ASSIGNIMENTccerviieieiiieeeniieeeeriieeeeireeeesrreeeeereeeensnns 14
Properties that refer to GUI ODJECtScccviiiiiiiiieeiiiieeeeiiee et eiree e e eivee e 15
New Fonts and Keyboard Files...........cccciiieiiiiiiiiiiieiiiie e 16
New AutoComplete FEaturecc.veiveviiiiiiiiie et 17
ISOLAtION IMOME ...ttt et ettt ettt et e e ens 19
EXPOTt 0 MEIMOTY ..coooiiiiiiiiee ettt e ettt e e s s et e e e e e s e esanbbaaeeaaeseennns 20
CloSE APPDOMAINuviiiiiiiiieieiiie e ettt e eeiteeeebte e e eaeeeeeetteeeeabeeesetseeeasssseeessseeeensnns 21
External Object (COM and .Net) Behaviour...........ccccceeevviiiiiiciiiiiiiiecccece e 22
Configuring for different Versions of the .Net Frameworkccccoevveiiiiiniiinennnns 24
SYSEEIM EITOTS....eiiiiiiiiee ettt ettt e e e et e e e e s e e abbaeeeeeesseenbbaeeeeens 26
WorkspaceLoaded Event (525).....cccccviiiiiiiiiiiiiiie ettt 31
IMISCEILANEOUS ...ttt ettt et sttt e st e et e bt esebeesabeeeane 32
CHAPTER 2 Object Oriented Programingc.ummmemsmmmssssmssssssssessens 33
INtrOdUCING ClASSESveeiieriieeiiiieeeeiiee ettt e ettt e e e ettt e e eebeeeeetbeeeeeraeeesnsseeeessraeeesnnnes 33
COMSIIUCTOTS .t eutteeeiiitee ettt ettt ettt ettt e sttt e e ettt e e sttt e e sttt e s eabbeeesebeeeesabbeeeenanee 37
DIESEIUCLOTS. ...ttt ettt e sttt e et e st e e sbbeeeenanee 50
CIASS IMEIMIDETS. ..ottt ettt ettt ettt st e st e s bt e e bt e e et e e sebeesabeeenne 52
FIRLAS 1. ettt ettt 53
IMEEROMS ...ttt ettt sttt et st s e e 58
PrOPEITICS ... veieiiiiie e ettt e ettt ettt ettt e ettt e e ettt e e e estbeeeesetaeeeesaraeeeessbeeessnseeeensseeeennnns 62
INEEITACES ...ttt sttt et st s e e 75
INCIUAING NAMESPACESccvvviieiiiiieeiiiieeeetieeeeeieeeeeiteeeestreeeesireeeeeabeeessesaeeessseeeensnns 77
INESLEA CLASSES -.eenevieitieitieetie ettt ettt ettt ettt et e st e st e et sbt e seb e sabeesbeeenbeeesineens 80
INAMESPACE SCIIPLS .veeeeveriieeeiieieeeiteeeeetteeeeireeeestteeesstrreeeatreeeesssseeessssaeesesseeessssseeeans 89
Class Declaration Statements...........ccveeeeeeuieeeiriieeeeiieeeesrreeeesreeeeenreeessnreeesssseeesnsnns 94
TField StateMENTtcoouviiiiiiiiiieeee e e 99

PTOPEITY SECHION.....ceiiiiiiiiiiiii ettt ettt e e et e e e e eebaeeeeebaeeesanreeas 101

iv Contents
CHAPTER 3 Using Classes with the Dyalog GUI and .Net............ccocovermennennenees 107
Using the Dyalog GUIcoooiiiiiiiiieeciiie ettt e e e s erae e e eeneaeeenens 107
Writing Classes based on the Dyalog GUI.............cccovviieiiiieiiiiieeeiiee e 111
Writing Classes based on NSt TYPES ...ccccuviiiiiiiieeiiiieeeiieeeerieee e e e eereeeeeeveee e 118
Example of a Class based on a .Net TYPEcoocviiiiiiiiiiiiiiiie e 119
BrowSINg CIaSSES ...uvviiiiiiiiieiiiiieeeiieeeeeireeeesieeeeeereeeestreeessaseeessssseeeenssseeesnsseeeeannns 121
CHAPTER 4 Language Enhancements.............coccounmmnnrnrnemesmmsmenssnssnessessessessenens 125
New and Improved Primitive Functions & Operators.............ceeevveeeerveeeeecveeeencnneeenns 125
And, Lowest Common Multiple: ReXAY ittt 126
Or, Greatest Common Divisor: ReXVY oo 127
IndeX: coviniiiiiiiiir e Re{XI0Y oo 128
Index with AXeS: ..ovvevvenirriinniiiennnen. Re{XYOLKIY cooiiieeiiieieeeee e 130
Power Operator:cceeuveueeniennennennnen. {RYI{XY(£XG)Y it 132
New and Improved System Functions & Commands.............ccccvereerinieeencveeesncnneeenn. 134
Base ClIass: ...covvevveneniininieienneinnennnnens R<[BASE .Y wevieeeeeeeecieee e 135
(0] BT P PP R<{X}YOCLASS Y eeveereeveeeeecrenanns 136
Display Form:cocovevenviiiinininnennnen. R<0DF Y.ieiiiioiiiiiiiiiiiieeieeeeee 139
Edit Object: ...ovvevveieniiiiiiiieiiiinennenen, {RY«{XYUED Y.uiioieeeeeeiiiiiiiceaaans 142
Fix SCript: voveviieeiiieiiiieieeieeeieieeeanen, Re{XIOFIX Yuooroioooieeeeeiieeeerenene 143
INStances:oeoveveveieniniiiiiiiinieireenennes R«OINSTANCES Y.oooovoooireeaeaeaannne 145
Name Classification:c..cecevenennennns Re[NC Yeiiiiiooiiiiiieeeeeeieeeee e 146
New Instance:cceeveveveveneneneinnnnennns ReONEW Yeeriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeens 159
Name List: .ouvviuviiiiniiiiniiiineieineeeenns Re{XYONL Y.ioooriieeeieeeeeieeeeveee e 160
SOUTCE: veuininininiiiereeeeenereieeareneeeaenenes RelSRC Y.uriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienens 164
This SPace: ..cuvveriiriiiieeiieeeieieeneanen, Re[THIS oooiiiiiiiiiiieeieeeeeeeeene 165
Window EXpose:ccoevevveiininiinennnnen. OWX e 166
List Classes:eevveeerrenenneennenennennennns YCLASSES.cooiiiiieiieeecieeeeeiee e 167
Edit Object: ...cvvevveiniiiiiiiiieiiineneenen, YED DINS ..cccoiviieeiriieeeciieeeeiieee e 168
Function Declaration Statements...........cccvireereriieeiiiiieeeeirereerieeeeeireeeeeiveeeeseneeeeennns 169
Access Statement........oeeevevenenenenennnne. T ACCESS iiiiiiiiiiee et 169
Attribute Statementcoeeuvenennennn. SALErIDULE i 170
Implements Statement.............c...euue.e. :IMPLlementS.iiuecieeeecieeeeereeenns 171
Signature Statement.............cceeeueennen.e. $51GNALULE i 171
TTI OIS .t eetiee ettt ettt e e ettt e e ettt e e e seba e e e sstbeeeeestbeeessseeeeensseeeessnaeeeesnaeeeannns 173
ST T oo [T 13T (= T 177

AlPhabetic INAEX.....ccocr s 178

CHAPTER 1

General

Interoperability and Compatibility

Introduction

Workspaces and component files are stored on disk in a binary format (illegible to text
editors). This format differs between machine architectures and among versions of
Dyalog. For example a file component written by a PC will almost certainly have an
internal format that is different from one written by a UNIX machine. Similarly, a
workspace saved from Dyalog Version 11 will differ internally from one saved by a
previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able to
interoperate by sharing workspaces and component files. However, this is not always
possible. For example, if a new internal data structure is introduced in a particular
version of Dyalog APL, previous versions could not be expected to make sense of it. In
this case the load (or copy) from the older version would fail with the message:

this WS requires a later version of the interpreter.

Similarly, large (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction.

The second item in the right argument of JFCREATE determines the addressing type of
the file.

'small'fcreate 1 32 a create small file.
'large'llfcreate 1 64 an create large file.

For the moment, if the second item is missing, the file type defaults to 32-bit-addressing
(max 4GB file size), even on a 64-bit system for maximum inter-operability. We will
change the default to 64-bit in Version 11.1, by which time we believe the bulk of our
users will be running versions which can use 64-bit files (Version 11.0 or later)

Dyalog APL Version 11 adds to the interoperability problem by supplying versions for
both 32-bit and 64-bit machine architectures.

Dyalog APL/W Version 11 Release Notes

Interoperability is summed up in the following tables. Table rows show the version that
is attempting to access the file or workspace and columns show the version that saved it:

This version can access files created by this version -
v

Version 10.1.5

Version 10.1.5 is an update to V10.1 issued specifically to enhance 10.1/11.0
compatibility. Version 10.1.5 is essentially version 10.1.2 with the addition of some
Version 11.0 file system code. If Version 10.1 applications are moved to 10.1.5, they
will be able to share files with code which has been moved to 64-bit Version 11.0. For
example, this would allow a computational server to be moved to 64-bit Version 11.0
and provide data to an application which was still running Version 10.1.

The row and column titles show the Dyalog version 9.0, 10.0, etc; (32) and (64) indicate
a version running on a 32-bit or 64-bit machine architecture, respectively.

Implementation

In general all writes are made in the format that is native to the writer. Readers do the
work of any necessary translation. The exception is when writing from a 64 bit version
to a 32 bit file. This has been allowed provided the machine architecture is the same. 32
bit files are the same architecture for the entire file. 64 bit files can have each
component written differently.

Workspace interoperability

can load/copy from ...

9.0 10.0 10.1 10.1.5 11.0(32) 11.0(64)
9.0 Yes - - - - -
10.0 Yes Yes - - - -
10.1 Yes Yes Yes Yes - -
10.1.5 Yes Yes Yes Yes - -
11.0 32) | Yes Yes Yes Yes Yes Yes
11.0(64) | - - Yes Yes Yes Yes

Chapter1 General

Component files (32-bit) and External variables

can access ...
9.0 10.0 10.1 10.1.5 11.032) 11.0(64)
Yes Yes Yes Yes Yes Yes
9.0 ~t ~fn~t ~fn~t ~fn~t ~fn~t ~fn~t
Yes Yes Yes Yes Yes Yes
10.0 ~t ~t ~t ~t ~n~t ~n~t
Yes Yes Yes Yes Yes Yes
10.1 ~t ~t ~t ~t ~n~t ~n~t
Yes Yes Yes Yes Yes Yes
10.1.5 ~W ~W ~W ~W ~N~W ~N~W
Yes Yes Yes Yes Yes Yes
11.0 (32) ~W ~W ~W ~W ~W ~W
Yes Yes Yes Yes Yes Yes
11.0 (64) ~W ~W ~W ~W ~W ~W
Notes

~f: Cannot read JORs of functions.

~n: Cannot read JORs of namespaces.

~t: Cannot tie files created on machines with different byte ordering (e.g. PC/UNIX).
~w: Can read from but cannot write to files created on machines with different byte
ordering (attempting to write generates FILE ACCESS ERROR).

Component files (64-bit)

can access ...

9.0 10.0 10.1 10.1.5 11.0(32) 11.0(64)
9.0 - - - - - -
10.0 - - - - - -
10.1 - - Yes Yes ~b Yes ~n~b | -
10.1.5 - - Yes Yes Yes ~n Yes ~n
11.0 (32) - - Yes Yes Yes Yes
11.0 (64) - - Yes Yes Yes Yes
Notes

~b: Cannot read a component with the wrong byte-ordering.
~n: Cannot read JORs of namespaces.

Dyalog APL/W Version 11 Release Notes

Sockets (Type ' APL ')

can decode from ...

9.0
10.0
10.1
10.1.5
11.0 32)
11.0 (64)

Notes

~f: Cannot read JORs of functions.

9.0 10.0 10.1 10.1.5 11.032) 11.0(64)
Yes Yes ~fn Yes~f~n | Yes~F1 | yeg~fn | -

Yes Yes Yes Yes Yes ~n -

Yes Yes Yes Yes Yes ~n -

Yes Yes Yes Yes Yes ~n -

Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

~n: Cannot read JORs of namespaces.

Auxiliary Processes

A Dyalog APL process is restricted to starting an AP of exactly the same architecture.
In other words, the AP must share the same word-width and byte-ordering as its

interpreter process.

Session Files

Session (.dse) files may only be used on the platform on which they were created and

saved.

Chapter1 General

Improved Workspace Management
Introduction

From version 11.0, Dyalog can reduce its process size by returning unused memory to
the operating system.

This happens when one of the following occurs:

JCLEAR
)LOAD
)SAVE
)RESET
Ow A

Notice that OW 4 could be called under program control to reduce the process size after
returning from a memory-intensive section of an application.

Workspace Size and Compaction

The maximum amount of memory allocated to a Dyalog APL workspace is defined by
the maxws parameter.

Upon) LOAD and) CLEAR, APL allocates an amount of memory corresponding to the
size of the workspace being loaded (which is zero for a clear ws) plus the workspace
delta.

The workspace delta is 1/16™ of maxws, except if there is less than 1/16™ of maxws in
use, delta is 1/64™ of maxws. This may also be expressed as follows:

delta«maxws{lo+>(w>0+16)d64 16}WS

where maxws is the value of the maxws parameter and ws is the currently allocated
amount of workspace. If maxws is 16384KB, the workspace delta is either 256KB or
1024 KB, and when you start with a c Ilear ws the workspace occupies 256KB.

When you erase objects or release symbols, areas of memory become free. APL
manages these free areas, and tries to reuse them for new objects. If an operation
requires a contiguous amount of workspace larger than any of the available free areas,
APL reorganises the workspace and amalgamates all the free areas into one contiguous
block as follows:

Dyalog APL/W Version 11 Release Notes

1. Anyun-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-referenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple numeric
array that happens to contain only values 0 or 1, is demoted or squeezed to have a
ODR type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process is
known as compaction.

4. In addition to any extra memory required to satisfy the original request, an
additional amount of memory, equal to the workspace delta, is allocated. This will
always cause the process size to increase (up to the maxws limit) but means that an
application will typically achieve its working process size with at most 4+15
memory reorganisations.

5. However, if after compaction, the amount of used workspace is less than 1/16 of
the Maximum workspace size (MAXWS), the amount reserved for working
memory is reduced to 1/64th MAXWS. This means that workspaces that are
operating within 1/16th of MAXWS will be more frugal with memory

Chapter1 General 7

Note that if you try to create an object which is larger than free space, APL reports
WS FULL.

The following system function and commands force a workspace reorganisation as
described above :

OWA,)RESET,)SAVE,)LOAD,)CLEAR

However, in contrast to the above, any spare workspace above the workspace delta is
returned to the Operating System. On a Windows system, you can see the process
size changing by using Task Manager.

The system function 0w 4 may therefore be used judiciously (workspace reorganisation
takes time) to reduce the process size after a particularly memory-hungry operation.

Note that in Dyalog APL, the SYMBOL TABLE is entirely dynamic and grows and
shrinks in size automatically. There is no SYMBOL TABLE FULL condition.

8 Dyalog APL/W Version 11 Release Notes

Number Conversion

The conversion of numbers between internal form and display form has been
significantly improved for Version 11.0.

Numbers (such as 3.14), input in the session or used as constants in source code, are
converted to a binary (IEEE) format for storage in the workspace. If the internal number
is subsequently displayed, the reverse conversion takes place as the number is
formatted.

The conversion of numbers between internal form and display form has been
significantly improved and in Version 11.0:

a) When 0PP is set to its maximum value of 17, distinct numbers have distinct
display forms.

b) Such forms use the smallest number of digits possible.

A consequence of this is that if JPP is set to its maximum value of 17, floating-point
numbers may be converted between binary and character representation without loss of
precision. In particular, if JPP is 17 and OCT is 0 (to ensure exact comparison), for any
floating-point number N the expression N=¢ 3N is true (except for denormal numbers).

Denormal Numbers

Numbers, very close to zero, in the range 2.2250738585072009E 308 to
4.9406564584124654E 324 are called denormal numbers.

Such numbers can occur as the result of calculations and are displayed correctly.
However, denormals cannot be specified as literals and are converted to zero on input.

Numbers below the lower end of this range (4.94E 324) are indistinguishable from zero
in IEEE double floating point format.

Note that the converse of (a) is not necessarily true: distinct input forms may convert to
the same internal binary number. This is clearly the case if we supply more digits than
the 64-bit internal format is capable of representing. In particular, a decimal number
such as +3 (or +10), which has an infinite binary representation must necessarily be
represented internally, only approximately. This can lead to a slightly surprising (though
correct) display, if PP is set to 17. For example, we might wonder why only 16 digits
of accuracy are displayed in the following:

0PP«17
+3 o why only 16 digits
0.33333333333333383

Chapter1 General 9

We see the reason if we display the internal format of + 3 together with its display form
and the display forms of its immediate IEEE neighbours:

0x3FD5555555555554 -> 0.33333333333333326
0x3FD5555555555555 -> 0.3333333333333333
0x3FD5555555555556 -> 0.33333333333333337

Rule (b) constrains us to format using the smallest number of digits that would convert
back to internal number 0x3FD5555555555555 (which is just less than one third).

The Problem

To avoid any loss of precision, literal numbers in source code are displayed with
maximum print precision, JPP=17, by the function editor and OCR.

Version 11 input conversion is very slightly more accurate than in previous versions.
For example, in Version 10.1, a number input as 0.6 would have been converted to
internal binary IEEE format as:

0.6 -> 0Ox3FE3333333333334 // V10
where in V11, it is converted to the marginally more accurate:
0.6 —> 0x3FE3333333333333 // V11

In V11, using PP=17, IEEE number 0x3FE3333333333333 displays (correctly) as
0. 6, while its neighbour 0x3FE3333333333334 displays (correctly) as
0.6000000000000001.

This means that source code from versions prior to Version 11 may occasionally
show strange-looking numbers such as 0.6000000000000001, when viewed in
Version 11.

Note that this DOES NOT CHANGE the accuracy of any calculations: refixing the
function with the longer (0.6000000000000001) number in Version 11 will
continue to convert to the same internal number (0x3FE3333333333334) as before.
However, changing the number in the source code to 0 . 6 would convert to a different
number (0x3FE3333333333333), which might be very slightly closer to what you
had in mind.

10 Dyalog APL/W Version 11 Release Notes

Changes to)COPY
Namespaces Containing Refs

Version 11 makes a small change to the way that namespaces containing refs are copied
using)COPY or CY.

We can show the change most easily by using a simple example.

Suppose a saved workspace contains two namespaces target and sibling, and
target contains a ref to s 1 b1 ing, which contains variable var.

.target-—---- . .—=> .sibling----.
I I I I
| sibref--+--" | var |
I I I I
L] L]
Old behaviour

Prior to Version 11, target's outward-pointing ref would be inverted on copy.

)copy myws target

New behaviour

)copy myws target

.target----- . .——> .(sibling)--.

Chapter1 General 11

In this case, the original parent/child relationships are preserved. Note however, that the
name 'sibling' isnot fixed in the space from which the copy occurred.

More generally, an incoming space, whose ancestry does not include the target of the
copy (e.g. sib1ing in the above example), is fixed as an anonymous child of the
current space.

Copying Dependant Objects

)COPY now issues a warning message when it copies dependant objects into the active
workspace.

If you) COPY an object without including the names of any objects upon which it
depends in the list of names to be copied, such as:

a) an Instance of a Class but not the Class itself

b) a Class but not a Class upon which it depends

¢) an array or a namespace that contains a ref to another namespace, but not the
namespace to which it refers

the dependant object(s) will also be copied but will be unnamed and hidden. In such
as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named
#.CompF ile and an Instance (of CompFile)named icf,

JCOPY CFWS icf
\CFWS saved Fri Mar 03 10:21:36 2006
copied object created an unnamed copy of class #.CompFile

The existence of a hidden copy can be confusing, especially if it is a hidden copy of an
object which had a name which is in use in the current workspace. In the above
example, if there is a class called CompF i Ie in the workspace into which icf is
copied, the copied instance may appear to be an instance of the visible CompF i e, but
it will actually be an instance of the hidden CompF i Ie - which may have very different
(or perhaps worse: very slightly different) characteristics to the named version.

If you copy a Class without copying its Base Class, the Class can be used (it will use the
invisible copy of the Base Class), but if you edit the Class, you will either be unable to
save it because the editor cannot find the Base Class, or - if there is a visible Class of
that name in the workspace - it will be used as the Base Class. In the latter case, the
invisible copy which was brought in by) COPY will now disappear, since there are no
longer any references to it - and if these two Base Classes were different, the behaviour
of the derived Class will change (and any changes made to the invisible Base Class
since it was copied will be lost).

12 Dyalog APL/W Version 11 Release Notes

Deferred Prototype Generation

Unlike earlier versions of Dyalog APL, Version 11.0 does not generate a prototype
when an empty array is created. The prototype is instead created when an operation on
the empty array needs a prototype to generate a result.

This means that Version 11.0 allows the creation of an empty array from an array of
namespace references. In previous Versions of Dyalog APL, this gives a
NONCE FERROR

a<0p#

The deferred requirement for prototypes is especially useful when making selections
from lists of namespaces. For example, if CDDB is a vector of namespaces representing
a CD database, an expression such as:

CDDB«+(CDDB.Artistec'Dylan')/CDDB

.. will always work in version 11.0, while it would have given a NONCE ERROR in
earlier versions in the unlikely event that there had been no CD’s by Bob Dylan in the
collection. However, the following expressions still gives a NONCE ERROR:

1+0p#
(0/CDDB) .Title

... because both expressions require inspection of a prototype in order to compute the
result. So it may still be necessary to check the length of the result before using the
selection.

Note that, if the CDDB was an array of instances of a Class, it would be possible to
specify a prototypical CD entry and get the latter expression to return the “expected
result” (0p<''). See Empty Arrays of Instances: How?

Chapter1 General 13

Matching Refs

In version 11.0, match (=) and not match (#) return 0 and 1 respectively if used to
compare two refs which do not point to the same object.

Earlier Versions returned 1 and 0 respectively if the refs were identical, but
NONCE ERROR if they were different.

Note:

At some point in the future, it is likely that it will be possible for a class definition to
contain definitions of comparison functions, and that the existence of such functions
would replace pointer matching. This is already the case for instances of .NET Classes,
for example:

dt1<[0ONEW System.DateTime (2006 8 28)
dt2<«[0ONEW System.DateTime (2006 8 28)
dti=dt2

1

These two instances match, even though they are NOT the same object, because the
DateTime class defines a comparison function for instances of this class. Therefore, it is
NOT safe to write code which assumes that, if two refs match, they refer to the same
object (unless you are the author of the classes being compared).

14 Dyalog APL/W Version 11 Release Notes

Changing Name-Class on Assignment

Version 11 allows you to overwrite a ref (name class 9) with a variable (name class 2)
and vice-versa.

For example, if we have:
ref<[ns"! a class 9 namespace ref.
and

var<3.1iu a class 2 variable.

We can now do either:

ref<«var a change class 9->2.
or

var<ref a change class 2->9.
In particular, if re f is a namespace reference, we can say:

ref<«,ref A 1-item vector: class 9->2.
then
ref<«oref A scalar ref: class 2->9.

The table of permitted re-assignments is as follow.

Ref Variable Function Operator
Ref Yes Yes
Variable Yes Yes
Function Yes Yes
Operator Yes Yes

Chapter1 General 15

Properties that refer to GUI Objects

In the Dyalog GUI, a number of Properties are used to specify and/or report references
between GUI objects. For example, the FontObj property of a Label object specifies the
Font object used to display its text. In previous versions of Dyalog APL, such objects
are referenced by name. In Version 11, all the Properties that are used to reference
another object accept/report refs as well as names.

The list of such Properties includes the following:

BtnPix CellFonts ColSortlmages CursorObj
DockChildren FontObj Fstyle HintObj
IconObj ImageListObj Input MDIMenu
Picture Popup RowTreelmages SplitObj1
SplitObj2 TipObj TabObj ToolboxBitmap

Note that when you query the value of any of these Properties, APL will report
whatever you specified (name or ref) when you set the Property. However, if you have
not previously set the value, it will be reported as an empty character vector.

There are however some Properties, whose values are automatically updated by the
system, for which this approach would not be appropriate. In these cases, an additional
Property is provided with the same name followed by the suffix Ref. For example,
MDIActive continues to report the name of the active SubForm whereas the new
property MDIActiveRef provides a refto it.

The list of such Properties includes the following:

MDIAtive MDIActiveRef

PageActive PageActiveRef

16

Dyalog APL/W Version 11 Release Notes

New Fonts and Keyboard Files

Version 11.0 includes a new set of APL fonts and an additional set of keyboard files.

The new fonts include the ¥ symbol (Power operator) and € symbol which replaces left
tack.

The Dyalog APL TrueType fonts (Dyalog Std TT and Dyalog Alt TT) have improved
appearance characteristics, especially as larger sizes.

The APL385 Unicode font is also included with Version 11. This font is recommended
for use with Notepad and other text editors when viewing and editing APLScript files.

The separate unified and traditional mode keyboards provided in previous versions of
Dyalog APL have been combined into a single table. For each supported country, the
new table is named cc.din, where cc is the country code. These tables are provided
in additional to the ones supplied with previous versions of Dyalog APL.

The keyboards start in unified mode and can be switched to traditional mode (Shift+r
for p) by clicking the Uni/Apl field in the status bar or by keying * on the Numeric-
Keypad.

The new tables support the entry of the ¥ and [symbols by pressing Ctrl+Shift+p and
Ctrl+Shift+] in either mode. However, the new tables do not support the entry of APL
underscored characters AABCDEFGHIJKIMNOPQRSTUVWXYZ

During installation, the appropriate new table will be presented as the default choice.

Note that the standard keyboard tables provided with earlier versions of Dyalog APL
are provided in the \ 01d sub-directory.

Chapter 1

General

17

New AutoComplete Feature

Version 11.0 includes an enhancement to AutoComplete that is designed to cater for the

use of common prefixes in names.

It is not unusual for developers to adopt a convention of prefixing a group of APL

names with a common string of characters. To improve the usefulness of the

AutoComplete feature in these circumstances, a new Common key has been provided.

rﬁ's Dyalog APLAY Configuration -\
Windows Sezzion Log Trace/Edit
General K.epbioard Cutput Wiorkspace Metwark,
Auto Complete Canfirnations Object Syntas
[“Iise Auto complete
Make suggestions after |1 characters.
Suggest up to 30 itemns at a time.
Show up to 20 | columng at a time,
K.eep hiztory
Hizstory Length 10 entries.
Include filenamesz
Ok Kes: |Hight ar; |<N|:une>
ar; |<N|:une>
Common Fey: | Tab
[Q.] [Caticel

If you are typing and the AutoComplete window is displayed, pressing the Common key
will auto-complete the common prefix. This is defined to be the longest string of leading
characters in the currently selected name that is shared by at least one other name in the

list.

18 Dyalog APL/W Version 11 Release Notes

For example, if the workspace contains variables A4daa1, Adaa2, AAaa3, ABbb1,
ABbb2, ABbb3, ACcc1 and the system is set to AutoComplete on 1 character, typing 4
will cause the AutoComplete window to display all 7 names.

If AAaa1 is the currently selected name, clicking the Common key will fill in the rest of
the common prefix, namely 4aa, and reduce the list to A4aal, Adaa2 and Adaa3s.

If ABbb1 is the currently selected name, clicking the Common key will fill in the
characters 4bb, and reduce the listto AAbb1, AAbb2 and AAbLDH3.

Whereas if the currently selected name is ACcc 1, clicking the Common key has no
effect.

Chapter1 General 19

Isolation Mode

There is a new option on the Create Bound File dialog box, when exporting a Class as a
Microsoft .Net Assembly (dll), labelled Isolation Mode.

For each application which uses a class written in Dyalog APL, at least one copy of
either dyalogl110.d11 or dyalogl10rt.dl11 will be started in order to host and
execute the appropriate APL code. Each of these engines will have an APL workspace
associated with it, and this workspace will contain classes and instances of these classes.
The number of engines (and associated workspaces) which are started will depend on
the Isolation Mode which was selected when the APL assemblies used by the
application were generated. Isolation modes are:

e Each host process has a single workspace
e Each appdomain has its own workspace
e FEach assembly has its own workspace

The last two Isolation Modes are new in version 11.0. Previously, each application
always used a single engine to run all classes and instances used by that application.

Note that, in this context, Microsoft Internet Information Services (IIS) is a single
application, even though it may be hosting a large number of different web pages. Each
ASP.Net application will be running in a separate AppDomain, a NET object which is
an isolated subdivision of the application. Other .NET applications may also be divided
into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any IIS
web page will be hosted in the same workspace and share a single copy of the
interpreter. The second option will start a new Dyalog engine for each ASP.Net
application. The final option will start a new Dyalog engine for each assembly
containing APL classes.

20

Dyalog APL/W Version 11 Release Notes

Export to Memory

There is a new option on the Session File menu labelled Export to Memory.

If you create an APL Class based upon a .Net Type, you must export it as a .Net
Assembly before you can use it.

This option allows you to create an in-memory .Net Assembly that you can use to test
the Class, without having to repeatedly go through the entire exercise of saving it as a
.Net Assembly on disk (as a DLL file) as you develop the code.

Furthermore, using this option, it is not necessary to Close the AppDomain (see Close
AppDomain) each time you replace the Assembly. However, be aware that each time
you export (to memory), additional memory is used and it may be appropriate to free it
(using Close AppDomain) periodically.

Note that to use an in-memory Assembly, it is not necessary to set JUSING.

You only need to re-export to memory if you make a change to your class which
changes the public interface of the class. So changes to functions do not require re-
exporting, but if you add a new method or change a signature, you must re-export.

Note that, APL will only allow you to use a Class based upon a .Net Type via a .Net
Assembly, either an in-memory Assembly or a DLL file on disk. You may not use a
Class directly.

Chapter1 General 21

Close AppDomain

There is a new option on the Session File menu labelled Close AppDomain.

When APL uses a Class which is in a .Net Assembly (normally a DLL file), that
Assembly is loaded into a .Net memory area known as the Application Domain, or the
AppDomain for short. When an assembly is in use by any application, including the
current APL workspace, you cannot overwrite the DLL file on disk, so you cannot make
changes to classes which need to be exported in order to be used.

Previously, during the development of a Class based upon a .Net Type (NetType) it
was necessary to) C LEAR, re-load the workspace or terminate Dyalog APL each time
you needed to update the DLL. Note that APL automatically closes the AppDomain
when a workspace is loaded, or on) CLEAR.

In order to speed up the development cycle, Version 11 provides a menu item which
closes the AppDomain so that you can then overwrite the DLL you were using with a
new version.
Note that any instances of .Net classes become null pointers when you do this:
dt<System.DateTl ime.Now
dt
O4-05-2006 14:06:46

[Close AppDomain]

dt
(NULL)

22 Dyalog APL/W Version 11 Release Notes

External Object (COM and .Net) Behaviour

Version 11.0 improves the behaviour of COM and .Net objects, but for backwards
compatibility it is possible to select old or new behaviour using OW X.

Old behaviour:

a)

Character vectors supplied as arguments to external functions, which are defined as
String parameters, are automatically enclosed for you. Similarly, string results are
automatically disclosed.

b) Properties that take parameters, such as the I tem Property in a Collection, are
treated as methods.

¢) APL provides lists of the Properties, Methods and Events provided by a GUI object
by exposing additional properties named PropList, MethodList and EventList.

New behaviour

a) Character vectors supplied as arguments to external functions, which are defined as
String parameters, must be enclosed. Strings are returned as enclosed character
vectors.

b) Properties that take indices, such as the It em Property in a Collection, are
honoured as Numbered or Keyed Properties and may be accessed by indexing.

¢) PropList, MethodList and EventList are not exposed. Instead, the information is

provided by ONZ ~2, 3 and ~ 8 (but alphabetically sorted).

The actual behaviour of a COM or .Net object is now determined by its value of OwX. If
OwX is 0 or 1, the old behaviour will apply. If OWX is 3, the new behaviour will apply.

The behaviour of COM and .Net objects in existing applications will remain the same
(because OwX will be 0 or 1) but you may obtain the benefits of the new behaviour by
setting (W X to 3 at the appropriate level in your application. Then, everything below
that (in the namespace hierarchy) will adopt the new behaviour.

Note that regardless of the value of OWX, Version 11 will honour the Default Property of
an external object thereby permitting the direct use of indexing on the object itself.

For example, if x I is an instance of the Excel. Application COM class, the following
expression to obtain the contents of the first Sheet in the first Workbook will succeed,
whatever the value of OWX.

x1.Workbooks[1].Sheets[1].UsedRange.Value2

Chapter1 General 23

Note that it is the value of OWX which the object acquired when it was created, rather
than the current value of OW X, which decide the behaviour.

Like other system variables, OW X is inherited from the environment when a new
namespace, class or instance is created. Classes inherit the value of OWX when a class is
edited or fixed, unless the class script explicitly sets a value for OWX. In the case of
NET classes, OW X is inherited when the class or namespace is loaded from a .NET
assembly. For built-in (GUI) classes, each new instance inherits OWX when it is created.

Examples

OWX<1

'XIW' OWC 'OleClient' 'Excel.Application'

XIW .Workbooks.Add &
XIW.ActiveWorkbook.Sheets.(Item 'Sheet2').Index

2
OWX<3
XL<[WC '0OleClient' (c'ClassName' 'Excel.Application')
XL .Workbooks.Add @
XL.ActiveWorkbook.Sheets[c'Sheet2'].Index

2

Note that it is the value of OWX in the object, and not in the calling environment, that
decides the behaviour:

Owx<3

Ousing<«"'"

System.DatelTime.Parsec'2006-09-12"'
12/09/2006 00:00:00

Owx<1

System.DatelTime.Parse'2006-09-12"'
LENGTH ERROR

System.DatelTime.Parse'2006-09-12"'

A

System.DateTime.OWX+1

System.DatelTime.Parse'2006-09-12"'
12/09/2006 00:00:00

Note that, if we expunged the System.DateTime class instead of setting OW X to 1, and
repeated the expression, a new DateTime class would be created but it would inherit
OwX from its parent (System), where OW X still has the value 3. Using .NET classes in an
application where OWX varies within a single APL namespace can therefore lead to
unexpected results. It is recommended that applications only use more than one value
for OWX as a temporary measure during a conversion project.

24 Dyalog APL/W Version 11 Release Notes

Configuring for different Versions of the .Net
Framework

Dyalog APL Version 11.0 is compatible with versions 1.1 and 2.0 of the Microsoft.Net
Framework.

On a machine that has multiple versions of the .Net framework installed, Dyalog APL
will use the most recent version by default. If you have both versions and need to use
version 1.1 for any reason, there are two configuration files which are distributed with
version 11 but need to renamed in order to take effect:

dyalog.exe.config.1.1 (in the main Dyalog folder, and)
bin\dyalogc.exe.config.1.1 (which controls the script compiler)

If you rename these files and remove the trailing ““.1.1”, so that the final file extension
becomes “config”, they will take effect, and cause the development environment and
the script compiler (respectively) to use version 1.1 of the framework. The contents of
these files are as follows:

<?xml version ="1.0"7?>
<configuration>
<startup>
<supportedRuntime version="v1.1.4322" />
</startup>
</configuration>

Note that ASP.NET may be configured to assume that version 1.1 of the framework
should be used. This can be configured differently for each “virtual folder”, like the
dyalog.net virtual folder which contains tutorials and examples distributed with Dyalog
APL version 11.0. You can verify the ASP.NET setting by starting the IIS Control
Panel, selecting Properties for a virtual folder, and navigating to the ASP.NET tab (see
the picture below).

Chapter1 General 25

dyalog.net Properties

Virtual Directory Documents Directony Security
HTTP Headers Custom Emors ASP.NET

ASP NET version: 205077 hal

Virtual path: Vdyalog net

File location: |C:\F'rog|am Files"[hvalogCvalog APL 11.0%am
File creation date: |11-08-2006 12:19:18

File last modified: |1 1-08-2006 12:19:13

Edit Corfiguration... |

QK] [Cancel

Note that it is not currently possibly for a single version of Dyalog APL to be used to
compile and run web pages using different versions of the framework simultaneously. If
you have web pages which need to continue to run under version 1.1, but wish to
develop new ones under 2.0, you must either host the pages on different machines, or
use version 10.1 of Dyalog APL to host the old web pages.

In theory, you could use version 1.1 for the script compiler in order to run web pages
under 1.1 and the development environment under 2.0 in order to experiment with non-
IIS functionality, but this is not recommended.

We hope to relax this restriction in a future version of Dyalog APL.

For more information, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSide-
by-SideExecution.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSide

26

Dyalog APL/W Version 11 Release Notes

System Errors

Introduction

Dyalog APL will display a System Error Dialog and (normally) terminate in one of two
circumstances:

1. Asaresult of the failure of a workspace integrity check
2. Asaresult of a System Exception

Workspace Integrity

When you) SAVE your workspace, Dyalog APL first performs a workspace integrity
check. If it detects any discrepancy or violation in the internal structure of your
workspace, APL does not overwrite your existing workspace on disk. Instead, it
displays the System Error dialog box and saves the workspace, together with diagnostic
information, in an aplcore file before terminating.

A System Error code is displayed in the dialog box and should be reported to Dyalog
for diagnosis.

Note that the internal error that caused the discrepancy could have occurred at any time
prior to the execution of) SAVE and it may not be possible for Dyalog to identify the
cause from this aplcore file.

If APL is started in debug mode with the —Dc, -Dw or —-DW flags, the Workspace
Integrity check is performed more frequently, and it is more likely that the resulting
aplcore file will contain information that will allow the problem to be identified and
corrected.

Chapter1 General 27

System Exceptions

Non-specific System Errors are the result of Operating System exceptions that can
occur due to a fault in Dyalog APL itself, an error in a Windows or other DLL, or even
as a result of a hardware fault. The following system exceptions are separately

identified.
Code Description Suggested Action
A Paging Fault has occurred As the most likely cause is a
temporary network fault,

900 .
recommended course of action is
to restart your program.

An exception has occurred in
gg(l)& dyalogll.dll or
dyalogllrt.dll
An exception has occurred in a Carefully check your ON4
DLL function called via ONA statement and the arguments that
995 you have passed to the
DLL function
An exception has occurred in a As above
996 DLL function called via a threaded
ON4 call
An exception has occurred while
997 . . X
processing an incoming OLE call
An exception has been caused by
999 Dyalog APL or by the Operating
System

28 Dyalog APL/W Version 11 Release Notes

Recovering Data from aplcore files

Objects may often (but not always) be recovered from aplcore using) COPY. Note that
because (by default) the aplcore file has no extension, it is necessary to explicitly add a
“dot”, or APL will attempt to find the non-existent file aplcore. DWS, i.e.

JCOPY aplcore.

Reporting Errors to Dyalog

If APL crashes and saves an aplcore file, please email the following information to

support@dyalog.com:

e abrief description of the circumstances surrounding the error
e your Dyalog APL Version number and Build ID (see Help/About)
e the aplcore file itself

If the problem is reproducible, i.e. can be easily repeated, please also send the
appropriate description, workspace, and other files required to do so.

System Error Dialog Box

The System Error Dialog illustrated below was produced by deliberately inducing a
system exception in the Windows DLL function memcpy (). The functions used were:

v foo
[1] goo
v
vV goo
(1] hoo
v
v hoo
[1] crash
v
vV crash
[1] ONA'dyalog32|MEMCPY u u u'
[2] MEMCPY 255 255 255

mailto:support@dyalog.com

Chapter1 General 29
Dyalog APL/W version 11.0
c:hhelpl 1. 0NCRASH DS
Syzemar 3595 code; 22
An erception has occurred in an external DLL.
|f your chooze b generate an aploare, it will be zaved as: "C:A\Documents
and Settingztall lzerz\Dezktophaplocore".
[t may be poszible to retiieve local vanables and other objects fram thiz file
wzing [JCY.
APL Stack trace-: il
#.crash[2] HEHCPY 255 255 255
#.hooll] crash
#.gooll] hoo
#.fooll] goo
v.

[Generate complete image core
[~ Create T ble E

feste TapRatE .rn:-r Paste to clipboard |
v Create an aplcore file
I Pasz exception on to aperating sustem Dizrnizs |

Options

Item Description
Generate complete Dumps a complete core image with the User Mode Process
image core Dumper (a Microsoft tool) - see below.
Create Trappable If you check this box (only enabled on System Error codes
Error 995 and 996), APL will not terminate but will instead

when you press Dismiss.

generate an error 91 (EXTERNAL DLL EXCEPTION)

Create an aplcore file | If this box is checked, an aplcore file will be created.

Pass exception on to If this box is checked, the exception will be passed on to

operating system your current debugging tool (e.g. Visual Studio).

Paste to clipboard Copies the contents of the APL stack trace window to the

Clipboard.

30

Dyalog APL/W Version 11 Release Notes

Generate complete image core

The Generate complete image core option attempts to execute

[SYSDIR] \userdump.exe, where [SYSDIR] is the windows system directory
(typically c: \windows\system32, and userdump . exe is the User Mode Process
Dumper, a Microsoft tool that can be downloaded from the following url (which you
may copy from Winhelp and paste into a browser):

http://www.microsoft.com/downloads/details.aspx?FamilylD=e23cd741-d222-48df-
9¢d8-287961414256&DisplaylLang=en

The process creates a file called dyalog.core in the current directory. This file contains
much more debug information than a normal aplcore (and is much larger than an
aplcore) and can be sent to Dyalog Limited (zip it first please). Alternatively the file can
be loaded into Visual Studio .Net to do your own debugging.

Debugging your own DLLs

If you are using Visual Studio on Microsoft Windows XP (or similar), the following
procedure should be used to debug your own DLLs when an appropriate Dyalog APL
System Error occurs.

Ensure that the Pass Exception box is checked, then click on Dismiss to close the
System Error dialog box.

The system exception dialog box appears. Click on Debug to start the process in the
Visual Studio debugger.

After debugging, the system exception dialog box appears again. Click on Don't send to
terminate Microsoft Windows XP's exception handling.

ErrorOnExternalException Parameter

This parameter allows you to prevent APL from displaying the System Error dialog box
(and terminating) when an exception caused by an external DLL occurs. The following
example illustrates what happens when the functions above are run, but with
ErrorOnExternalException set to 1.

http://www.microsoft.com/downloads/details.aspx?FamilyID=e23cd741-d222-48df

Chapter1 General 31

O<«2 ONQ'.' 'GetEnvironment' 'ErrorOnExternalException'

foo
EFEXTERNAL DLL EXCEPTION
crash[2] MEMCPY 255 255 255
A
Oen
91
) ST
crash[2]x*
hoo[1]
gool[1]
fool1]

WorkspaceLoaded Event (525)

Applies to Session (OSE)
If enabled, this event is reported when a workspace is loaded or on a c Jear ws. You
may not nullify or modify the event with a O-returning callback, nor may you generate

the event using (NQ, or call it as a method.

The event message reported as the result of 0DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object name : character vector ('0SE")
[2] Event name or code: 'WorkspaceLoaded' or 525

This event is fired immediately after a workspace has been loaded and before the
execution of JLX.

The callback function you attach should be defined in JSE.

32 Dyalog APL/W Version 11 Release Notes

Miscellaneous

Miscellaneous changes introduced in Version 11.0 are as follows:

Keyboard Viewer

The Version 11 Session includes the Kibitzer keyboard viewer from Kai Jager.
See Tools-> Keyboard Viewer ...

PassSingletonAsScalar

In Version 11.0, the default value of PassSingletonAsScalar is 0. In previous versions of
Dyalog APL it was 1.

33

CHAPTER 2

Object Oriented Programing

Introducing Classes

A Class is a blueprint from which one or more /nstances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together as
Members) which are defined within the body of the class script or are inherited from
other Classes. This version of Dyalog APL does not support Events although it is
intended that these will be supported in a future release. However, Classes that are
derived from .Net types may generate events using 4 [NQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new
versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class
can have Shared members which can be used without first creating an instance

Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A class
script may also be constructed from a vector of character vectors, and fixed using
Orrx.

A class script begins with a : C Iass statement and ends with a : EndClass
Statement.

34

Dyalog APL/W Version 11 Release Notes

For example, using the editor:

JCLEAR
clear ws
YED oAnimal

[an edit window opens containing the following skeleton Class script ...]

:Class Animal
:EndClass

[the user edits and fixes the Class script]

J)CLASSES
Animal

(ONCc'Animal'
9.4

Editing Classes

Between the :Class and : EndC lass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may not
add or alter functions by editing them independently and you may not add variables by
assignment or remove objects with JEX.

When you re-fix a Class Script using the Editor or with OF IX, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in its
entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so forth
that are created by actions external to the class.

For example, if X is not a public member of the class ¥yC lass, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X<99
The namespace is analogous to the namespace associated with a GUI object and will be

re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

Chapter 2 Object Oriented Programing 35

Inheritance

If you want a Class to derive from another Class, you simply add the name of that
Class to the : C 1ass statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS2.

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the Class
hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If the
global name of the base class is expunged, the derived class will still have the base
class reference, and the base class will therefore be kept alive in the workspace. The
derived class will be fully functional, but attempts to edit it will fail when it attempts to
locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is refixed, will the new base
class be detected.

If you edit, refix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or refixing the
derived class(es) after the base class has been substituted.

Classes that derive from .Net Types

You may define a Class that derives from any of the .Net Types by specifying the name
of the .Net Type and including a : USING statement that provides a path to the .Net
Assembly in which the .Net Type is located.

Example

:Class APLGreg: GregorianCalendar
:Using System.Globalization

:EndClass

36

Dyalog APL/W Version 11 Release Notes

Classes that derive from the Dyalog GUI
You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duc k that derives from a Po 1y object, the Class
specification would be:

:Class Duck:'Poly'
:EndClass

The Base Constructor for such a Class is the OWC system function.

For further details see Writing Classes Based on the Dyalog GUI.

Instances

A Class is generally used as a blueprint or model from which one or more Instances of
the Class are constructed. Note however that a class can have Shared members which
can be used directly without first creating an instance.

You create an instance of a Class using the ONEW system function which is monadic.

The 1-or 2-item argument to ONEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When ONEW executes, it first creates an empty instance namespace and tags it with an
internal pointer to its Class.

When ONEW executes, it creates a regular APL namespace to contain the Instance, and
within that it creates an Instance space, which is populated with any Instance Fields
defined by the class (with default values if specified), and pointers to the Instance
Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to ONEW. If ONEW was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

The result of ONEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

Chapter 2 Object Oriented Programing 37

Constructors

A Constructor is a special function defined in the Class script that is to be run when an
Instance of the Class is created by ONEW. Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a : Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a

:Access Public statement, because like all Class members, Constructors default to
being Private. Private Constructors currently have no use or purpose, but It is intended
that they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only one)
may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Constructor
argument. See Constructor Overloading for details.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor
function may be invoked is by ONEW. See Base Constructors for further details.

When ONEW is executed with a 2-item argument, the appropriate monadic Constructor
is called with the second item of the ONEW argument.

The niladic (default) Constructor is called when ONEW is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a fill item for the
Class.

Note that ONEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Example

The Domest icParrot Class defines a Constructor function egg that initialises the
Instance by storing its name (supplied as the 2™ item of the argument to ONEW) in a
Public Field called Name.

38 Dyalog APL/W Version 11 Release Notes

:Class DomesticParrot:Parrot
:Field Public Name

V egg name
:Implements Constructor
:Access Public
Name<name

v

:EndClass a DomesticParrot

pol<0NEW DomesticParrot 'Polly'
pol.Name
Polly

Constructor Overloading

NamelList header syntax is used to define different versions of a Constructor each with
a different number of parameters, referred to as its signature. The Clover Class
illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is called.
If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.
A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor

function may be invoked is by ONEW. See Base Constructors for further details.

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument
Make1 1-item vector
Make?2 2-item vector
Make3s 3-item vector
MakeO No argument
MakeAny Any array accepted

Chapter 2 Object Oriented Programing 39

Clover Class Example

:Class Clover a Constructor Overload Example
:Field Public Con
vV MakeO
:Access Public
:Implements Constructor
make 0

V Makei(arg)
:Access Public
:Implements Constructor
make arg

V Make2(argil argz)
:Access Public
:Implements Constructor
make argl arg2

V Make3(argl arg2 args)
:Access Public
:Implements Constructor
make argl arg2 args3

V MakeAny args
:Access Public
:Implements Constructor
make args

v

vV make args
Con<«(pargs) (2>0SI)args

v

:EndClass a Clover

40

Dyalog APL/W Version 11 Release Notes

In the following examples, the Make function (see Clover Class listing for details)
displays:

<shape of argument> <name of Constructor called><argument>
(see function Make)

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the ¥ake1 Constructor.Note that, although the
argument to Make1 is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable arg1.

(ONEW Clover(,1)).Con
Make1 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make 2, or Make 3 respectively.

(ONEW Clover(1 2)).Con
2 Make2 1 2

(ONEW Clover(1 2 3)).Con
3 Make3d 1 2 3

Creating an Instance with any other Constructor argument causes the system to choose
MakeAny.

(ONEW Clover(110)).Con
10 MakeAny 1 2 3 4 56 7 8 9 10
(ONEW Clover(2 2pi14)).Con
2 2 Makedny 1 2
3 4

Note that a scalar argument will call MakeAny and not Make1.

(ONEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system to
choose Makeo.

(ONEW Clover).Con
MakeO 0

Chapter 2 Object Oriented Programing

4

Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when ONEW is
invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
Specles<«spec

vV default
:Access Public Instance
:Implements Constructor
Species<«'Default Bird'

V R<«Speak
:Access Public
R<«'Tweet, tweet!'
v

:EndClass a Bird

The niladic Constructor (in this example, the function defau 1t) is invoked when
ONEW is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor egg, except that the value of the
Species Fieldissetto 'Default Bird'.

Birdy<ONEW Bird
Birdy.Species
Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the Class.
For example, in the expression (3+Birdy), APL has to create two fill items of
Birdy (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:

TweetyPie«3>104Birdy

42

Dyalog APL/W Version 11 Release Notes

The 10+ (temporarily) ceates a 10-element array comprising the single entity Birdy
padded with 9 fill-elements of Class Bird. To obtain the 9 fill-elements, APL calls the
niladic Constructor 9 times, one for each separate prototypical Instance that it is
required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?

In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese
:Field Public Name<''
:Field Public Strength<®
vV make2(name strength)
:Access Public
:Implements Constructor
Name Strength<«name strength

vV makel name
:Access Public
:Implements Constructor
Name Strength<name 1

Vv make_excuse
:Access Public
:Implements Constructor
O«'The cat ate the last one!'
v
:EndClass

We might create an array of Instances of the Cheese Class as follows:

cdata<('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses<{[ONEW Cheese w) ‘cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board«(cheeses.Strength<3)/cheeses
board.Name
Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board«(cheeses.Strength>5)/cheeses
board.Name
The cat ate the last one!

Chapter 2 Object Oriented Programing 43

Note that this message is not the result of the expression, but was explicitly displayed
by the make_excuse function. The clue to this behaviour is the shape of board; it is
empty!

pboard
0

When a reference is made to an empty array of Instances (strictly speaking, a reference
that requires a prototype), APL creates a new Instance by calling the niladic (default)
Constructor, uses the new Instance to satisfy the reference, and then discards it. Hence,
in this example, the reference:

board.Name
caused APL to run the niladic Constructor make_excuse, which displayed:
The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely after
the behaviour of empty arrays in general. In particular, the Class designer is given the
task of deciding what the type of the members of the prototype are.

Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty arrays,
a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs.
2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:
a. ifitis areference is to a Field, the value of the Field is obtained
b. ifitis areference is to a Property, the PropertyGet function is run
c. ifitis areference is to a Method, the method is executed
d. ifitis an assignment, the assignment is performed or the PropertySet
function is run
4. ifitis areference, the result of step 3 is used to generate an empty result array
with a suitable prototype by the application of the function {0pcw} to it
5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

44 Dyalog APL/W Version 11 Release Notes

Example

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor

ODF Species<spec

v
vV default
:Access Public Instance
:Implements Constructor
ODF Species<'Default Bird'
#.DISPLAY Species
v
V R<«Speak
:Access Public
#.DISPLAY R<«'Tweet, Tweet, Tweet'
v

:EndClass o Bird
First, we can create an empty array of Instances of Bird using 0p.
Empty<O0pNEW Bird 'Robin'

A reference to Empty . Spec ies causes APL to create a new Instance and invoke the

niladic Constructor de fau I t. This function sets Species to
'Default Bird'and calls #.DISPLAY which displays output to the Session.

DISPLAY Empty.Species
e mmmmmm

|Default Bird|
1 1

APL then retrieves the value of Species ('Default Bird'), applies the function
{0pcw} to it and returns this as the result of the expression.

A reference to Empty . Speak causes APL to create a new Instance and invoke the

niladic Constructor de fau I t. This function sets Species to
'Default Bird'and calls #.DISPLAY which displays output to the Session.

Chapter 2 Object Oriented Programing 45

DISPLAY Empty.Speak

> e — —

|Default Bird|
1 1

APL then involes function Speak which displays ' Tweet, Tweet, Tweet' and
returns this as the result of the function.

I e .
| Tweet, Tweet, Tweet|

APL then applies the function {0p<w)} to it and returns this as the result of the
expression.

Base Constructors

Constructors in a Class hierarchy, are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to
participate in the initialisation of an Instance.

Every Constructor function contains a: Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally be
followed by the : Base control word and an arbitrary expression.

The statement:

:Implements Constructor :Base expr

calls a monadic Constructor in the Base Class. The choice of Constructor depends upon
the rank and shape of the result of expr (see Constructor Overloading for details).

Whereas, the statement:
:Implements Constructor
or

:Implements Constructor :Base

calls the niladic Constructor in the Base Class.

46 Dyalog APL/W Version 11 Release Notes

Note that during the instantiation of an Instance, these calls potentially takes place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a ZENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
with a LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way a
Constructor function may be invoked is by OVEW. The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when a
new Instance is instantiated. If Constructor functions were allowed to call one another,
there would be several calls on the Base Constructor. Similarly, if a Constructor could
be called directly it would potentially duplicate the Bse Constructor call.

Chapter 2 Object Oriented Programing

47

Niladic Example

In the following example, Domest icParrot is derived from Parrot which is

derived from Bird. They all share the Field Desc (inherited from Bird). Each of the

3 Classes has its own niladic Constructor called eggo.

:Class Bird
:Field Public Desc
vV eggo
:Access Public
:Implements Constructor
Desc<«'Bird'

v
:EndClass a Bird

:Class Parrot: Bird

vV eggo
:Access Public
:Implements Constructor
Desc ,«<'>Parrot'
v
:EndClass a Parrot

:Class DomesticParrot: Parrot
vV eggo
:Access Public
:Implements Constructor
Desc,«<'»DomesticParrot'
v
:EndClass a DomesticParrot

(ONEW DomesticParrot).Desc
Bird-Parrot-DomesticParrot

Explanation

ONEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. As soon as the line:

:Implements Constructor

is encountered, ONEW calls the niladic constructor in the Base Class Parrot .eggo0
Parrot.eggo0 starts to execute and as soon as the line:

:Implements Constructor

is encountered, ONEW calls the niladic constructor in the Base Class Bird.eggo .

48

Dyalog APL/W Version 11 Release Notes

When the line:
:Implements Constructor

is encountered, ONEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the State Indicator unwinds ...

Bird.eggo executes Desc<«'Bird'!'
Parrot.egg0 executes Desc,<«'-»Parrot''
DomesticParrot.egg0 execute Desc,«'»DomesticParrot''

Monadic Example

In the following example, Domest icParrot is derived from Parrot which is
derived from Bird. They all share the Field Spec ies (inherited from Bird) but only
a Domest icParrot hasa Field Name. Each of the 3 Classes has its own Constructor
called egg.

:Class Bird
:Field Public Species
V egg spec
:Access Public Instance
:Implements Constructor
Specles<«spec
v

:EndClass a Bird

:Class Parrot: Bird
V egg species
:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species
v

:EndClass a Parrot

:Class DomesticParrot: Parrot
:Field Public Name
vV egg(name species)
:Access Public Instance
:Implements Constructor :Base species
[(ODF Name<name
v

:EndClass a DomesticParrot

polI<[0NEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Chapter 2 Object Oriented Programing 49

Explanation

ONEW creates the new instance and runs the Constructor Domest icParrot.egg.
The egg header splits the argument into two items name and spec ies. As soon as
the line:

:Implements Constructor :Base species

is encountered, ONEW calls the Base Class constructor Parrot . egg, passing it the
result of the expression to the right, which in this case is simply the value in species.

Parrot .egg starts to execute and as soon as the line:
:Implements Constructor :Base 'Parrot: ',species

is encountered, ONEW calls its Base Class constructor Bird .egg, passing it the result
of the expression to the right, which in this case is the character vector ' Parrot: '
catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.
At this point, the State Indicator would be:

)SI
[(#.[Instance of DomesticParrot]] #.Bird.eggl[3]1«
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.eggl2]
[constructor]
:base
[#.[Instance of DomesticParrot]] #.DomesticParrot.eggl[2]
[constructor]

Bird.egg then returns to Parrot .egg which returns to Domest icParrot .egg.

Finally, DomesticParrot.eggl 3] is executed, which establishes Field Name and
the Display Format (ODF) for the instance.

50 Dyalog APL/W Version 11 Release Notes

Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with an
Instance.

An Instance of a Class is destroyed when:
e The Instance is expunged using JEX or) ERASE.
e A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

e The Instance is re-assigned (see below)

e The result of ONEW is not assigned (the instance gets created then immediately
destroyed).

e APL creates (and then destroys) a new Instance as a result of a reference to a
member of an empty Instance. The destructor is called after APL has obtained
the appropriate value from the instance and no longer needs it.

e The constructor function fails. Note that the Instance is actually created before
the constructor is run (inside it), and if the constructor fails, the fledgling
Instance is discarded. Note too that this means a destructor may need to deal
with a partially constructed instance, so the code may need to check that
resources were actually acquired, before releasing them.

e On the execution of)CLEAR,) LOAD, JLOAD or JOFF.

Note that an Instance of a Class only disappears when the last reference to it
disappears. For example, the sequence:

I1<0ONEW MyClass
I2<I1
JERASE I1

will not cause the Instance of MyC lass to disappear because it is still referenced by
I2.

A Destructor is identified by the statement : Implements Destructor which
must appear immediately after the function header in the Class script.

:Class Parrot

v kill
:Implements Destructor
'This Parrot is dead'
v

:EndClass a Parrot
pol<0NEW Parrot 'Scarlet Macaw'

JERASE pol
This Parrot is dead

Chapter 2 Object Oriented Programing 51

Note that reassignment to po I causes the Instance referenced by po I to be destroyed
and the Destructor invoked:

pol<0NEW Parrot 'Scarlet Macaw'
pol<0NEW Parrot 'Scarlet Macaw'
This Parrot is dead

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure:
Domest icParrot => Parrot => Bird
containing the following Destructors:

:Class DomesticParrot: Parrot

v kill
:Implements Destructor
'This ', (sUTHIS),' is dead'
v

:EndClass a DomesticParrot
:Class Parrot: Bird

v kill
:Implements Destructor
'This Parrot is dead'
v

:EndClass a Parrot
:Class Bird

v kill
:Implements Destructor
'This Bird is dead'

v

:EndClass a Bird

Destroying an Instance of Domest icParrot will run the Destructors in
DomesticParrot, Parrot and Bird and in that order.

polI<[0NEW DomesticParrot
JCLEAR

This Polly is dead

This Parrot is dead

This Bird is dead

clear ws

52

Dyalog APL/W Version 11 Release Notes

Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together as
Members) which are defined within the body of the Class script or are inherited from
other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. D-fns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to set
the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all sorts
of operations. In particular, the value of a Property is not stored in the Property and
may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members
are common to all Instances and Shared Members may be referenced directly on the
Class itself.

Chapter 2 Object Oriented Programing 53

Fields

A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However, Fields
differ from variables in that they possess characteristics that control their accessibility.

A Field may be declared anywhere in a Class script by a : Fie I1d statement. This
specifies:

the name of the Field

whether the Field is Public or Private
whether the Field is Instance or Shared
whether or not the Field is ReadOnly
optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields for details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class Domest icParrot has a Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

v

:EndClass o DomesticParrot
The Name field is initialised by the Class constructor.
pet<UNEW DomesticParrot'Polly'

pet.Name
Polly

The Name field may also be modified directly:

pet.Name<¢pet.Name
pet.Name
ylloP

54 Dyalog APL/W Version 11 Release Notes

Initialising Fields

A Field may be assigned an initial value. This can be specified by an arbitrary
expression that is executed when the Class is fixed by the Editor or by OF I X.

:Class DomesticParrot: Parrot
:Field Public Name<'Dicky'
:Field Public Talks<«1

V egg nm
:Access Public
:Implements Constructor
Name<nm

v

:EndClass m DomesticParrot
Field Ta1ks will be initialised to 1 in every instance of the Class.

pet<UNEW DomesticParrot 'Dicky'

pet.Talks
1

pet .Name
Dicky

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: Shared Fields

Chapter 2 Object Oriented Programing 55

Private Fields

A Private Field may only be referenced by code running inside the Class or an Instance
of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 69) has a Private Instance Field named ¢ i e that is
used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
:Access Public Instance
:Trap 0
tie«filename [FTIE 0
:Else
tie«filename [FCREATE 0
:EndTrap
ODF filename,'(Component File)'
v

As the field is declared to be Private, it is not accessible from outside an Instance of the
Class, but is only visible to code running inside.

F1<[NEW ComponentFile 'test1l'
Fi.tie
VALUE ERROR
Fi.tie
A

56

Dyalog APL/W Version 11 Release Notes

Shared Fields

If a Field is declared to be Shared, it has the same value for every Instance of the Class.
Moreover, the Field may be accessed from the Class itself; an Instance is not required.

The following example establishes a Shared Field called Mont hs that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise a
Field.

:Class Example

:Using System.Globalization

:Field Public Shared ReadOnly Months<12+ ([ONEW DateT ime
FormatInfo).AbbreviatedMonthNames
:EndClass a Example

A Shared Field is not only accessible from an instance ...

EG<[NEW Example
EG.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct ©Nov...

... but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct ©Nov...

Notice that in this case it is necessary to insert a : Us i ng statement (or the equivalent
assignment to JUSING) in order to specify the .Net search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

QUSING<«'System.Globalization'
124+ (0ONEW DateTimeFormatInfo).AbbreviatedMonthNames
Jan Feb Mar Apr May Jun Jul Aug Sep Oct ©Nov...

Chapter 2 Object Oriented Programing 57

Trigger Fields

A Fields may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change the
Display Form. This can be achieved by making the Field a Trigger as illustrated by the
following example.

Notice that the Trigger function is invoked both by assignments made within the Class
(as in the assignment in ¢ t or) and those made from outside the Instance.

:Class MyClass
:Field Public Name
:Field Public Country<«'England'
V ctor nm
:Access Public
:Implements Constructor

Name<nm
v
v format

:Implements Trigger Name,Country

ODF'My name is ',Name,' and I Iive in ',Country
v

:EndClass a MyClass

me<[NEW MyClass 'Pete'
me
My name is Pete and I live in England

me.Country«'Greece'
me
My name is Pete and I live Iin Greece

me .Name<'Kostas'
me
My name is Kostas and I live iIn Greece

58 Dyalog APL/W Version 11 Release Notes

Methods

Methods are implemented as regular defined functions, but with some special attributes
that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a v, followed by a valid APL defined function header.
The method definition is terminated by a closing v.

The behaviour of a Method is defined by an : Access control statement.

Public or Private
Methods may be defined to be Private (the default) or Public.
A Private method may only be invoked by another function that is running inside the

Class namespace or inside an Instance namespace. The name of a Private method is not
visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods

Instance Methods may be declared with : Access Overridable.

A Method declared as being Overridable is replaced in situ (i.e.within its own Class) by
a Method of the same name that is defined in a higher Class which itself is declared
with the Override keyword. See Superseding Base Class Methods.

Chapter 2 Object Oriented Programing 59

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the
current Instance, so may be declared as Shared.

:Class Parrot:Bird

V R«Speak times
:Access Public Shared
R«<stimespc'Squark!"’

v

:EndClass a Parrot
wild<[NEW Parrot
wild.Speak 2

Squark! Squark!

Note that Parrot . Speak may be executed directly from the Class and does not in
fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

60 Dyalog APL/W Version 11 Release Notes

Instance Methods

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class Domest icParrot has a Speak method defined to be Public and Instance.
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that Domest icParrot .Speak supersedes the inherited Parrot .Speak

:Class DomesticParrot: Parrot

:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

v

V R«Speak times

:Access Public Instance

R«cName,', ',Name

R<tR,timespc' Who's a pretty boy,then!'
v

:EndClass a DomesticParrot

pet<UNEW DomesticParrot'Polly'

pet.Speak
Polly, Polly
Who's a pretty
Who's a pretty
Who's a pretty

3

boy,then!
boy,then!
boy,then!

bil<0NEW DomesticParrot'Billy'
bil.Speak 1

Billy, Billy

Who's a pretty boy,then!

Chapter 2 Object Oriented Programing 61

Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words in
the : Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base Class
method in the Base Class, by providing a method which is marked Override. The
typical use of this is to replace code in the Base Class which handles an event, with a
method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in
the base class:

V ErrorHandler
(1] :Access Public Overridable
(2] O<«+0DM

v

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

V ErrorHandler ;TN

(1] :Access Public Override
[2] O<«+0DM
[3] TN«'ErrorLog'OFSTIE 0
(u] 0ODM [JFAPPEND TN
[5] OFUNTIE TN

v

If the derived class had a function which was not marked Override, then function in the
derived class which called ErrorHand ler would call the function as defined in the
derived class, but if a function in the base class called ErrorHand ler, it would still
see the base class version of this function. With Override specified, the new function
supersedes the function as seen by code in the base class. Note that different derived
classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

62

Dyalog APL/W Version 11 Release Notes

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined to
allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices. The Numbered Property
is designed to allow APL to perform selections and structural operations on the
Property.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Properties.

If Instance My ITnst has a Simple Property Sprop and a Numbered Property Nprop,
the expressions

X«MyInst.SProp
X<MyInst.SPropl[2]

both cause APL to call the PropertyGet function to retrieve the entire value of Sprop.

The second statement subsequently uses indexing to extract just the second element of
the value.

Whereas, the expression:

X<MyInst .NPropl[2]
causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the

expression:

X«MyInst.NProp

Chapter 2 Object Oriented Programing 63

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a : Property ... :EndProperty section in a Class
Script.

Within the body of a Property Section there may be:

one or more : Access statements
a single PropertyGet function.

a single PropertySet function

a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety and
re-assigned (by APL) in its entirety. The following examples are taken from the
ComponentFile Class (see page 69).

The Simple Property Count returns the number of components on a file.

:Property Count
:Access Public Instance
V r<get
r«< 1+2>50FSIZE tie
v
:EndProperty a Count

F1<[NEW ComponentFile 'test1l'
F1.Append'Hello World'

1
F1.Count
1
F1.Append 42
2
F1.Count
2

Because there is no set function defined, the Property is read-only and attempting to
change it causes SYNTAX ERROR.

F1.Count<99

SYNTAX ERROR
F1.Count<99
A

64 Dyalog APL/W Version 11 Release Notes

The Access Property has both get and set functions which are used, in this simple
example, to get and set the component file access matrix.

:Property Access
:Access Public Instance
V r<get
r<[FRDAC tie
v
V set am;mat ;0K
mat<am.NewValue
:Trap 0
OK<(2=ppmat)Aa(3=2opmat)an/,mat=Lmat
:Else
0K<0
:EndTrap
'bad arg'USIGNAL(~0K)/11
mat [FSTAC tie
v
:EndProperty a Access

Note that the set function must be monadic. Its argument, supplied by APL, will be
an Instance of PropertyArguments. This is an internal Class whose NewValue
field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been assigned.
The function may validate the value reject or accept it (as in this example), or perform
whatever processing is appropriate.

F1<[NEW ComponentFile 'test1l'
pF1.Access

F1.Access<«3 3p28 2105 16385 0 2073 16385 31 1 0
F1.Access
28 2105 16385
0 2073 16385

31 1 0

F1.Access<'junk'

bad arg
F1.Access<'junk'
A

F1.Access<1 2p10
bad arg

F1.Access<1 2p10

A

Chapter 2 Object Oriented Programing 65

Simple Shared Properties

The ComponentFile Class (see page 69) specifies a Simple Shared Property named
F i les which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also possible
to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a
whole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared
V r<get
r<[JFLIB'""'
v
:EndProperty

Note that 0F LI B (invoked by the Fi les get function) does not report the names of
tied files.

F1<[NEW ComponentFile 'test1l'

OEX'F1°'

F2<[NEW ComponentFile 'test2'

F2.Files o NB UOFLIB does not report tied files
test1

OEX'F2!

Note that a Shared Property may be accessed from the Class itself. It is not necessary to
create an Instance first.

ComponentFile.Files
test1
test?2

66

Dyalog APL/W Version 11 Release Notes

Numbered Properties

A Numbered Property behaves like an array which is only ever partially accessed and
set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property
except that a scalar result implies a vector.

APL then calls the PropertyGet or PropertySet function once for each element of the
index set, supplying an argument of type PropertyArguments.

Note that when a numbered property is accessed, APL is responsible for validating the
indices and ensuring that the value assigned or retrieved is a scalar. When PropertySet
is called, NewValue will always be a scalar, and APL will validate that you return a
scalar as the result of a PropertyGet.

If the expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the PropertyGet or
PropertySet function successively for every element in the Property. Future versions of
APL may provide ways to specify that numbered accessor functions work one more
than one element at a time.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements or an INDEX ERROR if an index is out of bounds.

Example

The ComponentFile Class (see page 69) specifies a Numbered Property named
Component which represents the contents of a specified component on the file.

:Property Numbered Component
:Access Public Instance
vV r<shape
r< 1+2>0FSIZE tie
v
V r<get arg
r<c[FREAD tie arg.Indexers
v
vV set arg
(nparg.NewValue) UOFREPLACE tie,arg.Indexers
v
:EndProperty

Chapter 2 Object Oriented Programing

67

F1<[ONEW ComponentFile 'test1'

F1.Append” (15)xcik
1 2 3 4 5

F1.Count

F1.Component[u]
4 8 12 16

UsF1.Component
4 8 12 16

(c4 3)0F1.Component
L 8 12 16 3 6 9 12

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

F1.Component
1234 2468 369 12 4 8 12 16 5 10 15 20

((c4 3)0F1.Component)<«'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]
INDEX ERROR

F1.Component[6]

A

F1.Component[1;2]
RANK ERROR

F1.Component[1;2]

A

68

Dyalog APL/W Version 11 Release Notes

The Default Property

A single Numbered Property may be identified as the Default Property for the Class. If
a Class has a Default Property, indexing with the [primitive functionand [. . .]
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class (see page 69) can be
extended by adding the control word Defau lt tothe : Property statement for the
Component Property.

Indexing may now be applied directly to the Instance F1. In essence, 1 [n] is simply
shorthand for 1 .Component[n] and n(F1 is shorthand for n0F1.Component

:Property Numbered Default Component
:Access Public Instance
vV r<shape
r< 1+2>0FSIZE tie
v
V r<get arg
r<c[FREAD tie arg.Indexers
v
vV set arg
(narg.NewValue) UOFREPLACE tie,arg.Indexers
v
:EndProperty

F1<[NEW ComponentFile 'test1l'
Fi.Append (15)xcih

1 2 3 4 5
F1.Count
5
F1[u4]
4 8 12 16
(et 3)0F1

L 8 12 16 3 6 9 12
((c4 3)0F1)<«'Hello' 'World'
F1[3]

World

Note however that this feature applies only to indexing.
4sF1
DOMAIN ERROR
UsF1
A

Chapter 2 Object Oriented Programing 69

Component File Class Example

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
:Access Public Instance
:Trap 0
tie«filename [FTIE 0
:Else
tie«filename [FCREATE 0
:EndTrap
ODF filename,'(Component File)'

v Close
:Access Public Instance
OFUNTIE tie

vV r<Append data
:Access Public Instance
r«data [JFAPPEND tie

V Replace(comp data)
:Access Public Instance
data UOFREPLACE tie,comp

v

:Property Count
:Access Public Instance
V r<get
r«< 1+2>50FSIZE tie
v
:EndProperty a Count

70 Dyalog APL/W Version 11 Release Notes

Component File Class Example (continued)

:Property Access
:Access Public Instance
V r<get arg
r<[FRDAC tie
v
V set am;mat ;0K
mat<am.NewValue
:Trap 0
OK<(2=ppmat)a(3=2opmat)an/,mat=Lmat
:Else
0K<0
:EndTrap
'bad arg'USIGNAL(~0K)/11
mat [FSTAC tie
v
:EndProperty a Access

:Property Files
:Access Public Shared
V r<get
r<{JFLIB'""'
v
:EndProperty

:Property Numbered Default Component
:Access Public Instance
V r<shape args
r< 1+2>50FSIZE tie
v
V r<get arg
r<c[FREAD tie,arg.Indexers
v
vV set arg
(narg.NewValue) UOFREPLACE tie,arg.Indexers
v
:EndProperty

V Delete filejstie
:Access Public Shared
tie«file OFTIE 0
file JFERASE tie
v
:EndClass a Class ComponentFile

Chapter 2 Object Oriented Programing 7

Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not restricted
to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a s hape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assignment)
and the array returned by the get function (for an indexed reference). If the rank or
shape of these arrays fails to conform to the rank or shape of the indices, APL will
issue a RANK ERROR or LENGTH ERROR

Note too that indices may not be elided. If KProp is a Keyed Property of Instance I'1,
the following expressions would all generate NONCE ERROR.

I1.KProp

I1.KPropll<«10
I1.KPropl;l<«10
I1.KPropl'One' 'Two';]<«10
I1.KPropl;'One' '"Two'l<«10

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse? represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named Va lues. The following expressions show how it might be used.

SA1<[0NEW Sparse2
SA1.Valueslc'Widgets';c'Jan']<«100
SA1.Valuesl[c'Widgets';c'Jan']
100
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']<«1
0x2 3p16
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
10 20 30
40 50 60
SA1.Valueslc'Widgets';'Jan' 'Oct']
10 30
SA1.Values['Grommets' 'Widgets';c'Oct']
60
30

72 Dyalog APL/W Version 11 Release Notes

Sparse2 Class Example

:Class Sparse2 n 2D Sparse Array
:Field Private keys
:Field Private values
vV make
:Access Public
:Implements Constructor
keyséopcll 1
values<#
v
:Property Keyed Values
:Access Public Instance
V v«get arg;k
k«arg.Indexers
OSIGNAL(2=#pk)/u
k«fixkeys k
v<(values,0)[keysik]

V set arg;new;k;v;n
v<arg.NewValue
k«arg.Indexers
OSIGNAL(2#pk) /4
k«fixkeys k
v<(pk) (px(21=p,Vv))V
OSIGNAL((pk)#pv)/5
k v<,"k v
:If v/new<~kekeys

values,<new/v
keys,<new/k
k v/Z<c~new

:EndIf
:If O0<pk
values[keysik]l«v
:EndIf
v
:EndProperty

vV k«fixkeys k
k<(22="K){, (cxa)w) 'k
k<> (o.{2,/<"a w})/k
v
:EndClass a 2D Sparse Array

Chapter 2 Object Oriented Programing 73

Internally, Sparse?2 maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the se ¢ function receives a list of keys (indices)
in arg.Indexer and values in arg.NewValue. The function updates the values of
existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices)
in arg.Indexer. The function uses these keys to retrieve the corresponding values,
inserting Os for non-existent keys.

Note that in the expression:

SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

the structure of arg . Indexer is:

74 Dyalog APL/W Version 11 Release Notes

Example

A second example of a Keyed Property is provided by the KeyedF i 1e Class which is
based upon the ComponentFile Class (see page 69) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
eis<{,(c*(1==w))w}

vV Open filename
:Implements Constructor :Base filename
:Access Public Instance
:If Count>0
Keys<{>w>[0BASE.Component} 1Count
:Else
Keys<«0Opc''
:EndIf
v

:Property Keyed Component
:Access Public Instance
V r<get arg;keys;sink
keys<eisoarg.Indexers
OSIGNAL(~n/keyseKeys)/3
r«<{2>w>[0BASE.Component} 'Keysikeys

V set arg;new;keys;vals
vals<«arg.NewValue
keys<eisoarg.Indexers
OSIGNAL((pkeys)=pvals)/5
:If v/new<~keyseKeys

sink<Append 'v&+(cnew)/ keys vals
Keys,<new/keys
keys vals/=<«c~new

:EndIf
:If O<pkeys
Replace v&t (Keysikeys) (vQtkeys vals)
:EndIf
v
:EndProperty

:EndClass a Class KeyedFile

K1<[ONEW KeyedFile 'ktest'

K1.Count

0
K1.Component[c'Pete']«u?2
K1 .Count

1

K1.Component['John' 'Geoff'J<«(110)(3 4p112)
K1.Count

Chapter 2 Object Oriented Programing 75

K1.Component['Geoff' 'Pete']
1 2 3 L U2
5 6 7 8
9 10 11 12
K1.Component['Pete' 'Morten']«(3 Lp'e')(113)
K1.Count

K1.Component['Morten' 'Pete' 'John']
1 11 2 113 ©ooo0 123 4567 89 10
1 12 2 1 2 3 cooo

oooo0

Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents a
protocol that an application must follow in order to manipulate a Class in a particular
way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own individual
version of Compare. An application can then be written that sorts Instances of any
Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method defined
in the Interface:

:Implements Method <InterfaceName.MethodName>

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The function
name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name,
however, need not be the same as that described in the Interface.

76

Dyalog APL/W Version 11 Release Notes

Example

The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance

:Interface FishBehaviour

V R«Swim n Returns description of swimming capability
:Access Public

v

:EndInterface o FishBehaviour

:Interface BirdBehaviour

V R«Fly na Returns description of flying capability
:Access Public

v

V R<Lay a Returns description of egg-laying behaviour
:Access Public

v

V R«Sing m Returns description of bird-song
:Access Public

v

:EndInterface a BirdBehaviour

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
V R«NoCanFly
:Implements Method BirdBehaviour.Fly
R«'"Although I am a bird, I cannot fly'

V R«LayOneEgg
:Implements Method BirdBehaviour.Lay
R«'I lay one egg every year'

v

V R<Croak
:Implements Method BirdBehaviour.Sing
R<'Croak, Croak!'

v

V R<Dive
:Implements Method FishBehaviour.Swim
R<'I can dive and swim like a fish'

v

:EndClass e Penguin

Chapter 2 Object Oriented Programing 77

In this case, the Pengu in Class derives from Anima I but additionally supports the
BirdBehaviour and FishBehav iour Interfaces, thereby inheriting members
from both.

Pingo<[NEW Penguin
0CLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour UOCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour UOCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour UOCLASS Pingo).Sing
Croak, Croak!

Including Namespaces

A Class may import methods from one or more plain Namespaces. This allows several
Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:
:Include NS

When the Class is fixed by the editor or by OF X, all the defined functions and
operators in Namespace V.S are included as methods in the Class. The functions and
operators which are brought in as methods from the namespace NS are treated exactly
as if the source of each function/operator had been included in the class script at the
point of the : Inc lude statement. For example, if a function contains : Signature
or : Access statements, these will be taken into account. Note that such declarations
have no effect on a function/operator which is in an ordinary namespace.

D-fnns and D-ops in NS are also included in the Class but as Private members, because
D-fnns and D-ops may not contain : Signature or : Access statements. Variables
and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in NS
are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in N S.

Conversely, functions in NS will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

78 Dyalog APL/W Version 11 Release Notes

Class supersedes
Included Namespace, supersedes
Base Class

Any number of Namespaces may be included in a Class and the : Tnc lude statements
may occur anywhere in the Class script. However, for the sake of readability, it is
recommended that you have : Inc Iude statements at the top, given that any
definitions in the script will supersede included functions and operators.

Example

In this example, Class Pengu in inherits from Animal and includes functions from
the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass e Penguin

Namespace BirdStuf f contains 2 functions, both declared as Public methods.

:Namespace BirdStuff
V R«Fly
:Access Public Instance
R<'Fly, Fly ...'
v
V R«<Lay
:Access Public Instance
R<'Lay, Lay ...'
v
:EndNamespace a BirdStuff

Namespace FishStuff contain a single function, also declared as a Public method.

:Namespace FishStuff
V ReSwim
:Access Public Instance
R<«'Swim, Swim ...'
v
:EndNamespace a FishStuff

Pingo<[NEW Penguin
Pingo.Swim
Swim, Swim
Pingo.Lay
Lay, Lay
Pingo.Fly
Fly, Fly

Chapter 2 Object Oriented Programing 79

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuff.F ly method with Penguin.F1ly. We can

hide BirdStuff.F 1y with a Private method in Pengu i n that does nothing. For
example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V Fly a Override BirdStuff.Fly
v
:EndClass e Penguin

Pingo<[NEW Penguin
Pingo.Fly

VALUE ERROR
Pingo.Fly

A

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V R«Fly n Override BirdStuff.Fly
:Access Public Instance
R«'Sadly, I cannot fly'
v
:EndClass e Penguin

Pingo<[NEW Penguin
Pingo.Fly
Sadly, I cannot fly

80

Dyalog APL/W Version 11 Release Notes

Nested Classes

It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Public. This is specified by a : Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Public Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be used
by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.Net and is one of the samples
distributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

GolfCourse A Class that represents a Golf Course, having Fields Code and
Name.

Slot A Class that represents a tee-time or match, having Fields T ime
and Players. Up to 4 players may play together in a match.

Booking A Class that represents a reservation for a particular tee-time at a
P p
particular golf course. This has Fields 0K, Course, TeeT ime

and Message. The value of TeeT ime is an Instance of a Slot
Class.

StartingSheet | A Class that represents a day's starting-sheet at a particular golf
course. It has Fields 0k, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

Chapter 2 Object Oriented Programing

81

GolfService Example Class

:Class GolfService
:Using System

:Field Private GOLFILE<'' a Name of Golf data file
:Field Private GOLFID<«0 a Tie number Golf data file

:Class GolfCourse
:Field Public Code<« 1
:Field Public Name<''

vV ctor args
:Implements Constructor
:Access Public Instance
Code Name<«args
(ODF Name,'(',(sCode),')"

:EndClass

:Class Slot
:Field Public Time
:Field Public Players

VvV ctorl t
:Implements Constructor
:Access Public Instance
Time<t
Players<«0Opc''

vV ctor2 (t pl)
:Implements Constructor
:Access Public Instance
Time Players<t pl

v format
:Implements Trigger Players
ODFsTime Players
v
:EndClass

82 Dyalog APL/W Version 11 Release Notes

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

vV ctor args
:Implements Constructor
:Access Public Instance
OK Course TeelTime Message<«args

v
v format
:Implements Trigger OK,Message
ODFsCourse TeeTime(>0K¢Message'OK')
v
:EndClass

:Class StartingSheet
:Field Public 0K
:Field Public Course
:Field Public Date
:Field Public Slots<[NULL
:Field Public Message

vV ctor args
:Implements Constructor
:Access Public Instance
OK Course Date<«args
v
v format
:Implements Trigger OK,Message
ODF%2 1p(%Course Date) (+% Slots)
v
:EndClass

V ctor file
:Implements Constructor
:Access Public Instance
GOLFILE<file
OFUNTIE(((YOFNAMES)~' ')1cGOLFILE)>0FNUMS,O0
:Trap 22
GOLFID<«GOLFILE QOFTIE O
:Else
InitFile
:EndTrap

Chapter 2 Object Oriented Programing

83

dtor
:Implements Destructor
OFUNTIE GOLFID

InitFile;COURSECODES;COURSES;INDEX ;I
:Access Public
:If GOLFID=0
GOLFILE (OFERASE GOLFID
:EndIf
GOLFID<«GOLFILE [FCREATE 0
COURSECODES<«1 2 3
COURSES<+'St Andrews' 'Hindhead' 'Basingstoke'
INDEX<«(pCOURSES)pO
COURSECODES COURSES INDEX [JFAPPEND GOLFID
:For I :In 1pCOURSES
INDEX[I]«®& & [JFAPPEND 1
:EndFor
COURSECODES COURSES INDEX [JFREPLACE GOLFID 1

R<«GetCourses ;COURSECODES ;COURSES ; INDEX
:Access Public

COURSECODES COURSES INDEX<[FREAD GOLFID 1
R<{0NEW GolfCourse w} +8+4COURSECODES COURSES

84

Dyalog APL/W Version 11 Release Notes

V R«GetStartingSheet ARGS;CODE;COURSE ;DATE ;COURSECODES

sCOURSES ; INDEX ; COURSEI ; IDN
sDATES ; COMPS ; IDATE ;TEETIMES
sGOLFERS ;1T
:Access Public
CODE DATE<ARGS
COURSECODES COURSES INDEX<[FREAD GOLFID 1
COURSEI«COURSECODES1CODE
COURSE<[INEW GolfCourse(CODE(COURSEI>COURSES,c''))
R«<[NEW StartingSheet (0 COURSE DATE)
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
:Return
:EndIf
IDN<2 0ONQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS<[FREAD GOLFID,COURSEI>INDEX
IDATE«DATES1IDN
:If IDATE>pDATES
R.Message<«'No Starting Sheet available'

:Return
:EndIf
TEETIMES GOLFERS<«[FREAD GOLFID,IDATE->COMPS
T<DateTime.New (<DATE.(Year Month Day)), +[1]

24 60 ATTEETIMES
R.Slots<{0ONEW Slot w) 'T,oc YGOLFERS
R.0OK<+1

Chapter 2 Object Oriented Programing

85

V R«MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME

sCOURSECODES ; COURSES ; INDEX
sCOURSEI ;IDN;DATES ;COMPS ; IDATE
sTEETIMES ;GOLFERS;OLD;COMP; HOURS
sMINUTES s NEAREST ;TIME ;NAMES ; FREFE
sFREETIMES;I;J ;DIFF
:Access Public
a If GimmeNearest 1s 0, tries for specified time
a If GimmeNearest iIs 1, gets nearest time
CODE TEETIME NEAREST<«34ARGS
COURSECODES COURSES INDEX<[FREAD GOLFID 1
COURSEI«COURSECODES1CODE
COURSE<[INEW GolfCourse(CODE(COURSEI>COURSES,c''))
SLOT<0ONEW Slot TEETIME
R«<[NEW Booking(0 COURSE SLOT'')
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
tReturn
:EndIf
:If TEETIME.Now>TEETIME
R.Message<«'Requested tee-time is Iin the past'
:Return
:EndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message<«'Requested tee-time 1s more than 30
days from now'
t:Return
:EndIf
IDN<2 0ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS<[FREAD GOLFID,COURSEI>INDEX
IDATE<«DATESVIDN
:If IDATE>pDATES
TEETIMES<(24% 6017 0)+10x 1+11+8x6
GOLFERS<((pTEETIMES) ,4)pc''llowed per tee time

:If 0=0LD«>(DATES<2 [ONQ'.' 'DateToIDN',3+0TS)/
LpDATES
COMP«(TEETIMES GOLFERS)UFAPPEND GOLFID
DATES ,<IDN

COMPS ,«~COMP

(DATES COMPS)UFREPLACE GOLFID,COURSEI-INDEX
:Else

DATES[OLD]<«IDN

(TEETIMES GOLFERS)FREPLACE GOLFID,

COMP«<OLD>COMPS

DATES COMPS OFREPLACE GOLFID,COURSEI-INDEX

:EndIf

86 Dyalog APL/W Version 11 Release Notes

:Else
COMP<IDATE>COMPS
TEETIMES GOLFERS<«{FREAD GOLFID COMP
:EndIf
HOURS MINUTES<TEETIME.(Hour Minute)
NAMES<«(3VvARGS)~8!'"
TIME<24 60LHOURS MINUTES
TIME<10x|L0.5+TIME+10
:If ~NEAREST
I<«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p 'GOLFERS[I;]
R.Message<«'Not available'
:Return
:EndIf
:Else
:If ~v/FREE<(pNAMES)<>,/+/0=p 'GOLFERS
R.Message<«'Not available'
:Return
:EndIf
FREETIMES<«(FREExXxTEETIMES)+32767x~FREE
DIFF<«|FREETIMES-TIME
I«DIFF|/DIFF
:EndIf
J<(>,/0=p GOLFERS[I;])/14
GOLFERS[I;(pNAMES)+J J<NAMES
(TEETIMES GOLFERS)UFREPLACE GOLFID COMP
TEETIME<DateTime.New TEETIME.(Year Month Day),
3424 60TI-TEETIMES
SLOT .Time<TEETIME
SLOT .Players<(>,/0<p GOLFERS[I;])/GOLFERS[I;]
R.(0OK TeeTime)<«1 SLOT

:EndClass

Chapter 2 Object Oriented Programing 87

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method ITnitFile if it doesn't already exist.

G<[NEW GolfService 'F:\HELP11.0\GOLFDATA"
G
#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .Net type System.DateTime, and the
following statements just set up some temporary variables for convenience later.

O<«Tomorrow< (ONEW DateTime(3+0TS)).AddDays 1
31/03/2006 00:00:00

O«TomorrowAt7«<Tomorrow.AddHours 7
31/03/2006 07:00:00

The MakeBooking method takes between 4 and 7 parameters viz.

the code for the golf course at which the reservation is required
the date and time of the reservation

a flag to indicate whether or not the nearest available time will do
and a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, [DF is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger 0K

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead (4-
player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack 0
K

88

Dyalog APL/W Version 11 Release Notes

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'

Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave Al
OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00 ...

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

... so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal Class
StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00

Chapter 2 Object Oriented Programing 89

Namespace Scripts

A Namespace Script is a script that begins with a : Namespace statement and ends
with a : EndNames pace statement. When a Namespace Script is fixed, it establishes
an entire namespace that may contain other namespaces, functions, variables and
classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

:Namespace a
d<0NEW a1
e<[NEW bb2

:Class a1l
v r<foo
:Access Shared Public
r<[0ONEW b1 b2
v
:EndClass a ai

V r<goo
r<al.foo

Vv r<foo
r<[ONEW b1 b2

:Namespace b

:Class b1

:EndClass a b1

:Class b2
:Class bb2

:EndClass a bb2
:EndClass a b2
:EndNamespace a b
:EndNamespace a a

90

Dyalog APL/W Version 11 Release Notes

a.d
#.a.la1]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

Note that the names of Classes b1 (a.b.b1)and b2 (a.b.b2) are not visible from
their “uncle” a1 (a.a1).

a.goo
VALUE ERROR
fool2] r<[NEW b1 b2

Notice that Classes in a Namepsace Script are fixed before other objects (hence the
assignments to d and e are evaluated affer Classes a1 and bb2 are fixed), although the
order in which Classes themselves are defined is still important if they reference one
another during initialisation.

Warning: If you introduce new objects of any type (functions, variables, or classes)
into a namespace defined by a script by any other means than editing the script, then
these objects will be lost the next time the script is edited and fixed. Also, if you
modify a variable which is defined in a script, the script will not be updated.

Chapter 2 Object Oriented Programing 91

Namespace Script Example

The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named ent r ies, which is simply a vector of
instances of DiaryEntry. These are 2-element vectors containing a .NET DateTime
object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances which
causes the invocation of the default constructor DiaryEntry.Make0 when Diary
is fixed. See Empty Arrays of Instances for further explanation.

The entries Field is referenced through the Ent ry Property, which is defined as the
Default Property. This allows individual entries to be referenced and changed using
indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is
referenced by the initialisation of the Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry
:Field Public When
:Field Public What
V Make(ymdhm wot)
:Access Public
:Implements Constructor
When What<(ONEW DateTime(6+5+ymdhm))wot
UDFsWhen What
v
vV MakeoO
:Access Public
:Implements Constructor
When What<{ONULL"''
v
:EndClass n DiaryEntry

92 Dyalog APL/W Version 11 Release Notes

:Class Diary
:Field Private entries<O0pUNEW DiaryEntry
V R<Add(ymdhm wot)
:Access Public
R<[(NEW DiaryEntry(ymdhm wot)
entries,<R

V R«DoingOn ymd;X
:Access Public
X<, (tentries.When.(Year Month Day))a.=3 1p3+ymd
R<X/entries

V R<Remove ymdhm;X
:Access Public
:If R«v/X<«entries.When=(NEW DateTime(6+5+ymdhm)
entries<«(~X)/entries
:EndIf
v
:Property Numbered Default Entry
V R<«Shape
R<pentries
v
V R«Get arg
R«arg.Indexers-entries
v
v Set arg
entrieslarg.Indexersl«arg.NewValue
v
:EndProperty
:EndClass a Diary

:EndNamespace

Chapter 2 Object Oriented Programing 93

Create a new instance of Diary.
D<0NEW DiaryStuff.Diary
Add a new entry "meeting with John at 09:00 on April 30™

D.Add (2006 4 30 9 0)'Meeting with John'
30/04/2006 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April 30™"

D.Add (2006 4 30 10 0)'Dentist'
30/04/2006 10:00:00 Dentist

One of the benefits of the Namespace Script is that Classes defined within it (which are

typically related) may be used independently, so we can create a stand-alone instance

of DiaryEntry; "Doctor at 11:00"...

Doc<«[NEW DiaryStuff.DiaryEntry((2006 4 30 11 0)'Doctor')
Doc
30/04/2006 11:00:00 Doctor

... and then use it to replace the second Diary entry with indexing:

D[2]<«Doc

and just to confirm it is there ...

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30" ?
D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John
30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment ...

D.Remove 2006 4 30 11 0
1

and the complete Diary is ...

0D
30/04/2006 09:00:00 Meeting with John

94

Dyalog APL/W Version 11 Release Notes

Class Declaration Statements

This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Function Declaration Statements.

:Interface Statement

:Interface <interface name>

:EndInterface

An Interface is defined by a Script containing skeleton declarations of Properties and/or
Methods. The script must begin with a : Tnterface Statement and end with a
:EndInterface Statement.

An Interface may not contain Fields.
There is no need for the Properties and Methods defined in an Interface to contain

: Access Statements as these will be overridden by the : Access declarations within
the Classes that implement the Interface.

:Namespace Statement

:Namespace <namespace name>
:EndNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a : Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of : Namespace and
: EndNames pace statements within the Namespace script.

Classes are defined by pairs of : C lass and : EndC lass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that refer
to one another where the use of nested classes is inappropriate.

Chapter 2 Object Oriented Programing 95

:Class Statement

:Class <class name><:base class name> <,interface name...>
:Include <namespace>

:EndClass

A class script begins with a : C Iass statement and ends with a : EndClass
statement. The elements that comprise the : C 1 ass statement are as follows:

Element Description

class name Optionally, specifies the name of the Class,
which must conform to the rules governing APL
names.

base class name | Optionally specifies the name of a Class from
which this Class is derived and whose members
this Class inherits.

interface name The names of one or more Interfaces which this
Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
: Inc lude statements. For further details, see Including Namespaces in Classes

Examples:

The following statements define a Class named Pengu in that derives from (is based
upon) a Class named 4nima ! and which supports two Interfaces named
BirdBehaviour and FishBehaviour

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
:EndClass

The following statements define a Class named Pengu in that derives from (is based
upon) a Class named 4nima I and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass

96 Dyalog APL/W Version 11 Release Notes

:Using Statement

:Using <NameSpacel ,Assembly]>

This statement specifies a .NET namespace that is to be searched to resolve unqualified
names of .NET types referenced by expressions in the Class.

Element Description
NameSpace Specifies a .NET namespace.
Assembly Specifies the Assembly in which NameSpace is located. If the

Assembly is defined in the global assembly cache, you need only
specify its name. If not, you must specify a full or relative pathname.

If the Microsoft .Net Framework is installed, the System namespace in mscorlib.dll is
automatically loaded when Dyalog APL starts. To access this namespace, it is not
necessary to specify the name of the Assembly.

When the class is fixed, QUSING is inherited from the surrounding space. Each
: Us 1ng statement appends an element to JUSING, with the exception of : Us ing
with no argument:

If you omit <Namespace>, this is equivalent to clearing JUSING, which means that
no .NET namespaces will be searched (unless you follow this statement with additional
: Us 1ng statements, each of which will append to OUSING).

To set QUSING, to a single empty character vector, which only allows references to
fully qualified names of classes in mscorlib.d1ll, you must write:

:Using , (note the presence of the comma)
or
:Using ,mscorlib.dll

(i.e. specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

Chapter 2 Object Oriented Programing 97

:Attribute Statement

:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .Net Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .Net attribute

ConstructorArgs | Optional arguments for the Attribute constructor

Example

The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods foo and goo within it.

:Class c1

:using System
:attribute SerializableAttribute
tattribute CLSCompliantAttribute 1

v foo(pl p2)
:Access public instance
:Signature foo Object,0Object
:Attribute Obsoletedttribute

vV goo(pil p2)
:Access public instance
:Signature foo Object,0Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

:EndClass a c1

When this Class is exported as a .Net Class, the attributes are saved in its metadata. For
example, Visual Studio will warn developers if they make use of a member which has
the ObsoleteAttribute.

98 Dyalog APL/W Version 11 Release Notes

:Access Statement

t:Access <Private|Public><Instance|Shared><0Overridable>

:Access <WebMethod»>

<Override>

The :Access statement is used to specify characteristics for Classes, Properties and

Methods.

Element

Description

Private|Public

Specifies whether or not the (nested) Class,
Property or Method is accessible from
outside the Class or an Instance of the Class.
The defaultis Private.

Instance|Shared

For a Field, specifies if there is a separate
value of the Field in each Instance of the
Class, or if there is only a single value that is
shared between all Instances.

For a Property or Method, specifies whether
the code associated with the Property or
Method runs in the Class or Instance..

WebMet hod

Applies only to a Method and specifies that
the method is exported as a web method.
This applies only to a Class that implements
a Web Service.

Overridable

Applies only to an Instance Method and
specifies that the Method may be
overridden by a Method in a higher
Class. See below.

Override Applies only to an Instance Method and
specifies that the Method overrides the
corresponding Overridable Method
defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable isreplaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding Base

Class Methods.

Chapter 2 Object Oriented Programing 99

Nested Classes

The :Access statement is also used to control the visibility of one Class that is defined
within another (a nested Class). A Nested Class may be either Private or Public.
Note that the :Access Statement must precede the definition of any Class contents..

A Public Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be used
by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod

Note that : Access WebMet hod is equivalent to:

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

:Field Statement

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
FieldName <<« expr»>

A :Field statement is a single statement whose elements are as follows:

Element Description

Private|Public Specifies whether or not the Field is accessible
from outside the Class or an Instance of the
Class. The defaultis Private.

Instance|Shared | Specifies if there is a separate value of the Field
in each Instance of the Class, or if there is only a
single value that is shared between all Instances.

ReadOnly If specified, this keyword prevents the value in
the Field from being changed after initialisation.

FieldName Specifies the name of the Field (mandatory).

« expr Specifies an initial value for the Field.

100

Dyalog APL/W Version 11 Release Notes

Examples:

The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so may
be accessed (set or retrieved) from outside an Instance.

:Field Public Name
The following statement defines a Field called Mont hs.

:Field Shared ReadOnly Months<12+(ONEW DateTimeFormatInfo)
.AbbreviatedMont hNames

Mont hs is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and may
not be altered after initialisation. It's initial value is calculated by an expression that
obtains the short month names that are appropriate for the current locale using the .Net
Type DateTimeFormatInfo.

Note that Fields are initialised when a Class script is fixed by the editor or by OF1X. If
the evaluation of expr causes an error (for example, a VALUE ERROR), an
appropriate message will be displayed in the Status Window and OF T X will fail with a
DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its
:Fie ld statement.

In the second example above, the expression will only succeed if QUSING is set to the
appropriate path, in this case System.Globalization.

Chapter 2 Object Oriented Programing

101

:Property Section

A Property is defined by a : Property ... :EndProperty section in a Class
Script. The syntax of the :Property Statement, and its optional : Access statement is

as follows:

:Property <Simple|Numbered|Keyed> <Default> Name<,Name>...
:Access <Private|Public><Instance|Shared>

:EndProperty

Element Description
Name Specifies the name of the Property by which

it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour
may be specified by a comma-separated list
of names.

Simple|Numbered|Keyed

Specifies the type of Property (see below).
The defaultis Simple.

Default

Specifies that this Property acts as the
default property for the Class when indexing
is applied directly to an Instance of the
Class.

Private|Public

Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Instance|Shared

Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-

assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Numbered and Keyed Properties are designed to allow APL to perform selections and

structural operations on the Property.

102

Dyalog APL/W Version 11 Release Notes

Within the body of a Property Section there may be:

one or more : Access statements
a single PropertyGet function.

a single PropertySet function

a single PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.

When a Class is fixed by the Editor or by OF IX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape
functions within them. If anything is wrong, an error is generated and the Class is not

fixed.

PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has 2-3 read-only Fields which are as follows:

Name The name of the property. This is useful when one function is
handling several properties.

NewValue Array containing the new value for the Property or for selected
element(s) of the property as specified by Indexers.

Indexers An array that identifies the element(s) of the Property that are
to be referenced or assigned.

Chapter 2 Object Oriented Programing 103

:PropertyGet Function Syntax

PropertyGet Syntax: R<Get
R<Get 1ipa

The name of the PropertyGet function must be Ge ¢, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

For a Simple Property, the result R may be any array. For a Numbered Property, the
result R must be scalar. For a Keyed Property, R must conform to the rank and shape
specified by ipa.Indexers.

If monadic, ipa is an instance of the internal class PropertyArguments

In all cases, i pa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, i pa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that
identifies a single element of the Property whose value is to be obtained. In this case, R
must be scalar.

If the Property is Keyed, ipa.Indexers is a vector containing the arrays that were
specified within the square brackets in the reference expression. Specifically,
ipa.Indexers will contain one more elements than the number of semi-colon (;)
separators.

104 Dyalog APL/W Version 11 Release Notes

PropertySet Function Syntax

PropertySet Syntax: Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.
ipa is an instance of the internal class PropertyArguments.

In all cases, i pa.Name contains the name of the Property being referenced and
NewV a lue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, i pa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that
identifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.Indexers is a vector containing the arrays that were
specified within the square brackets in the assignment expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators.

Chapter 2 Object Oriented Programing 105

PropertyShape Function Syntax

PropertyShape Syntax: R«Shape
R<Shape ipa

The name of the PropertyShape function must be Shape, but is case-independent. For
example, shape, Shape, sHape and SHAPE are all valid names for the
PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.
The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class PropertyArguments. ipa.Name
contains the name of the Property being referenced and NewValue and Indexers
are undefined (VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the Property.
Each element of R specifies the length of the corresponding dimension of the Property.
Otherwise, the reference or assignment to the Property will fail with DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its dimensions.
If not, the reference or assignment to the Property will fail with RANXK ERROR or
LENGTH ERROR..

106 Dyalog APL/W Version 11 Release Notes

107

CHAPTER 3

Using Classes with the Dyalog GUI and .Net

Using the Dyalog GUI

With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI
objects as Instances of built-in (GUI) Classes. This approach supplements (but does not
replace) the use of OWC, OW.S and so forth.

To create a GUI object using ONEW, the Class is given as the GUI Object name and the
Constructor Argument as a vector of (Property Name / Property Value) pairs. For
example, to create a Form:

F1<0NEW 'Form' (c'Caption' 'Hello World')

Notice however that only perfectly formed name/value pairs are accepted. The highly
flexible syntax for specifying Properties by position and omitting levels of enclosure,
that is supported by OWC and OW S, is not provided with ONEW.

Naturally, you may reference and assign Properties in the same way as for objects
created using OWC:

F1.Size
50 50
F1.51ize<«20 30

Callbacks to regular defined finctions in the Root or in another space, work in the same
way too. If function F00 merely displays its argument:

v FOO M
(1] O«M
v

F1.onMouseUp«'#.F00'
#.[Form] MouseUp 78.57142639 4L .62540...

Note that the first item in the event message is a ref to the Instance of the Form.

108

Dyalog APL/W Version 11 Release Notes

To create a control such as a Button, it is only necessary to run ONEW inside a ref to the
appropriate parent object. For example:

B1i<«F1.0NEW 'Button' (('Caption' '&0K')('Size' (10 10)))

As illustrated in this example, it is not necessary to assign the resulting Button Instance
to a name inside the Form (F1 in this case). However, it is a good idea to do so so that
refs to Instances of controls are expunged when the parent object is expunged. In the
example above, expunging F1 will not remove the Form from the screen because B1
still exists as a ref to the Button. So, the following is safer:

F1.B1<F1.0ONEW'Button'(('Caption' '80K')('Size' (10 10)))
Or pehaps better still,

F1.(B1<0ONEW 'Button'(('Caption' '&0K'")('Size' (10 10))))

Chapter 3 Using Classes with the Dyalog GUI and .Net 109

Temperature Converter Example

The following function illustrates this approach using the Temperature Converter
example descibed previously.

(71

V TempConv;TITLE;TEMP
TITLE<'Temperature Converter'
TEMP<UONEW'Form' (('Caption'TITLE)('Posn'(10 10))

TEMP.
TEMP.
TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.

('Size' (30 40)))

(MB<[ONEWc'MenuBar')
MB. (M<[NEW'Menu'(,c'Caption' '&Scale'))
MB.M.(C<«[NEW'MenuItem'

(('Caption' '&Centigrade')('Checked' 1)))
MB.M.(F<«[ONEW'MenuItem'

(,c('Caption' '&Fahrenheit')))

(LF<0ONEW'Label'(('Caption' 'Fahrenheit')
('"Posn'(10 10))))
(F<[ONEW'Edit'(('Posn' (10 40))('Size'(® 20))
('FieldType' 'Numeric')))

(LC<ONEW'Label'(('Caption' 'Centigrade')
('"Posn'(40 10))))
(C<ONEW'Edit'(('Posn' (40 40))('Size'(®& 20))
('FieldType' 'Numeric')))

(F2C<[NEW'Button' (('Caption' 'F->C')
('"Posn' (10 70))('Default' 1))

(C2F<[NEW'Button' (('Caption' 'C->F"')
('"Posn'(40 70))))
(Q<UNEW'Button'(('Caption' '&Quit')
('"Posn'(70 30))('Size'(® 40))
('Cancel' 1)))

(S<0ONEW'Scroll'(<('Range' 101)))

MB.M.C.onSelect<«'SET _C'
MB.M.F.onSelect<'SET_F'
F2C.onSelect<«"'f2c'
F.onGotFocus<'SET_DEF'
C2F.onSelect<«'c2f"
C.onGotFocus<«'SET_DEF'!
onClose<«'QUIT'
Q.onSelect<«'QUIT'
S.onScroll<«'c2f scroll'

ODQ'TEMP'!

110

Dyalog APL/W Version 11 Release Notes

For brevity, only a couple of the callback functions are shown here.

(1]

v

v

vV c2f scroll MSG

v

f2c

TEMP.C.Value<«(TEMP.F.Value-32)x5+9

a Callback for Centigrade iIinput via scrollbar
TEMP.C.Value<101-4oMSG

c2f

-
Temperature Converter

BEX)

Srale

Fahrenheit

Centigrade

1T [3

212 F->C

100

Dui |

Chapter 3 Using Classes with the Dyalog GUI and .Net 11

Writing Classes based on the Dyalog GUI

You may create user-defined Classes based upon Dyalog GUI objects as illustrated by
the Temperature Converter Class which is listed overleaf.

Temperature Converter Class

To base a Class on a Dyalog GUI object, you specify the name of the object as its Base
Class. For example, the Temperature Converter is based upon a Form:

:Class Temp: 'Form'

Being based upon a top-level GUI object, the Temperature Converter may be used as
follows:

T1<0ONEW Temp(<'Posn'(68 50))

r Temperature Converter [Z]@-\

Srale

Fahrenheit 212 F-=C

Centigrade 100

Dui |

112

Dyalog APL/W Version 11 Release Notes

Temperature Converter Example

:Class Temp: 'Form'
vV Make pv;TITLE

:Access Public
TITLE<'Temperature Converter'
:Implements Constructor :Base (c'Caption' TITLE),pv,
c('Size' (30 40))
MB<[IJNEWc<'MenuBar'
MB. (M<[NEW'Menu'(,c'Caption' '&Scale'))
MB.M.(C<«UNEW'MenuItem'(('Caption' '&Centigrade')
('Checked' 1)))
MB.M.(F<UONEW'MenuItem' (,c('Caption' '&Fahrenheit')))
LF<[NEW'Label' (('Caption' 'Fahrenheit')
('"Posn'(10 10)))
F<«(ONEW'Edit'(('Posn'(10 40))('Size'(& 20))
('FieldType' 'Numeric'))
LC<ONEW'Label' (('Caption' 'Centigrade')
('"Posn'(40 10)))
C<(ONEW'Edit'(('Posn'(40 40))('Size'(® 20))
('FieldType' 'Numeric'))
F2C<0ONEW'Button' (('Caption' '"F->C')('Posn'(10 70))
('Default' 1))
C2F<0NEW'Button'(('Caption' 'C->F')('Posn' (40 70)))
Q<«0ONEW'Button' (('Caption' '&Quit')('Posn'(70 30))
('Size'(® 40))('Cancel' 1))
S<«0ONEW'Scroll'(<('Range' 101))
MB.M.C.onSelect<«'SET C'
MB.M.F.onSelect<«'SET_F'
F2C.onSelect<«'f2c!
F.onGotFocus<'SET_DEF'!
C2F.onSelect<«'c2f"
C.onGotFocus<«'SET_DEF'
onClose<«'QUIT'
Q.onSelect<«'QUIT!'
S.onScroll<'c2f_ scroll'

f2c
C.Value<(F.Value-32)x5+9

c2f
F.Value<«32+C.Valuex9+5

c2f scroll MSG

a Callback for Centigrade iIinput via scrollbar
C.Value<101-4oMSG

c2f

Chapter 3 Using Classes with the Dyalog GUI and .Net 113

vV f2c_scroll Msg
a Callback for Fahrenheit input via scrollbar
F.Value<«213-4oMsg
f2c

vV Quit
Close

Vv SET_DEF MSG
(oMSG) .Default<«1

v SET_C
a Sets the scrollbar to work in Centigrade
S.Range<«101
S.onScroll<«'c2f_ scroll'
MB.M.C.Checked<«1
MB.M.F.Checked<0

vV SET_F
a Sets the scrollbar to work in Fahrenheit
S.Range<«213
S.onScroll<'f2c_scroll'
MB.M.F.Checked<«1
MB.M.C.Checked<0

v

:EndClass a Temp

Notice that the : Implements Constructor statement of its Constructor Make:

:Implements Constructor :Base (c'Caption' TITLE),pv,
c('Size' (30 40))

passes on the application-specific property list (pv) given as its argument, but (in this
case) specifies Caption and Size as well. The order in which the properties are specified
in the : Base call ensures that the former will act as a default (and be overriden by an
application-specific Caption requested in pv), whereas the specied Size of (30 40)
will override whatever value of Size is requested by the host application in pv.

Other Instances can co-exist with the first:

T2<[NEW Temp(('Caption' 'My Application')
('Posn'(10 10))

114 Dyalog APL/W Version 11 Release Notes

Dual Class Example

The Dual Class example is based upon the example used to illustrate how you may
build an ActiveX Control in Dyalog APL (see Chapter 13), but re-engineered as a
internal Dyalog APL Class. The full listing of the Dual Class script is provided
overleaf.

This version of Dual is based upon a SubForm:
:Class Dual: 'SubForm'

The Dual Control requires a GUI parent but several Instances can co-exist, quite
independently, in the same parent.

For example, function RUN creates a Form and 3 Instances of Dual; one to convert
Centigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to
convert centimetres to inches.

V RUN;F;D1PROPS;D2PROPS;D3PROPS

[1]
[2] F<ONEW'Form'(('Caption' 'Dual Instances')
('Coord' 'Pixel')('Size' (320 320)))
[3]
(4] D1PROPS<«('Captioni' 'Centigrade')
('Caption2' 'Fahrenheit')
[51] D1PROPS,«('Intercept' 32)('Gradient'(9+5))
('Valuei' 0)('Range'(0 100))
[6] F.D1<«F.(ONEW Dual(('Coord' 'Pixel')('Posn'(10 10))
('Size'(100 300)),D1PROPS)
(7]
[81] D2PROPS<«('Captionil' 'Fahrenheit')

('Caption2' 'Centigrade')
[91] D2PROPS,«('Intercept'(-32x5%+9))('Gradient'(5+9))
('Valuei' 0)('Range'(0 212))
[10] F.D2<F .[(ONEW Dual(('Coord' '"Pixel')('Posn'(110 10))
('Size'(100 300)),D2PROPS)

11
[12] D3PROPS«('Captionl' 'Centimetres')
('Caption2' 'Inches')
[13] D3PROPS,«('Intercept' 0)('Gradient'(+2.54))
('Value1' 0)('Range'(0 100))
[14] F.D3<F .[(ONEW Dual(('Coord' 'Pixel')('Posn'(210 10))
('Size'(100 300)),D3PROPS)

[16] ODQ'F!'

Chapter 3 Using Classes with the Dyalog GUI and .Net 115

«- Dual Instances E]@-\
Centigrade 26
4
F ahrenheit 78.8
F ahrenheit 113
J
Centigrade 43
iI:E!nl:imel:rlﬁes ?15
EIr1u:hes _J 2?’.5!52?555!1E

Dual's Constructor Ma ke first splits its constructor arguments into those that apply to
the Dual Class itself, and those that apply to the SubForm. Its

:Implements Constructor statement then passes these on to the Base
Constructor, together with an appropriate setting for EdgeStyle.

:Implements Constructor :Base BaseArgs,
c'EdgeStyle' 'Dialog'

116 Dyalog APL/W Version 11 Release Notes

Dual Class Example

:Class Dual: 'SubForm'
:Include GUITools
:Field Private _Captioni<''
:Field Private _Caption2<«''
:Field Private _Value1l<0
:Field Private _Value2<0
:Field Private _Range<o0
:Field Private _Intercept<0
:Field Private _Gradient<1
:Field Private _Helight<uWo

V Create args;H;W;POS;SH;CH;Y1;Y2;BaseArgs;MyArgs;
Defaults
:Access Public
MyArgs BaseArgs<SplitNV args
:Implements Constructor :Base BaseArgs,
c'EdgeStyle' 'Dialog'
ExecNV_ MyArgs o Set Flds named _PropertyName MyArgs
Coord<«'Pixel'
H W<Size
P0S<«2410.5x0[(H-_Height)
CH«>GetTextSize'W'
'Slider'OWC'TrackBar'P0S('Size'_Height W)
Slider.(Limits AutoConf)<«_Range 0
Slider.(TickSpacing TickAlign)<10 'Top'
Slider.onThumbDrag<'ChangeValue'
Slider.onScroll<«'ChangeValue'
Y1<POS[1]-CH+1
Y2«P0S[1]+_Height+1
'Captioni_'OWC'Text'_ Captioni(Y1,0)('AutoConf' 0)
'Caption2_'OWC'Text' _Caption2(Y2,0)('AutoConf' 0)
'Value1i 'OWC'Text'(3_Valuel)(Y1,W)('HAlign' 2)
('AutoConf' 0)
CalcValue?2
'Value2_ 'OWC'Text'(3_Value2)(Y2,W)('HAlign' 2)
('AutoConf' 0)

onConfigure<«'Configure'

:Property Captionil, Caption2
:Access Public
V R«Get arg

R<(arg.Name,'_'")OWG'Text'
v
v Set arg
(arg.Name,'_'")OWS'Text'arg.NewValue
v

:EndProperty

Chapter 3 Using Classes with the Dyalog GUI and .Net

117

:Property Value1l
:Access Public
V R<Get
R<«_Valuel
v
v Set arg
ONQ'Slider' 'Scroll' 0 arg.NewValue
v
:EndProperty

:Property Intercept, Gradient, Range, Height,

:Access Public
V R«Get arg
R<e' _',arg.Name
v
:EndProperty

vV CalcValue2
_Value2<«_Intercept+_Gradientx_Valuel
v

vV ChangeValue MSG
a Callback for ThumbDrag and Scroll
_Valuel<> 14+MSG
CalcvValue2
Valuel .Text<s_Valuel
Value2_ .Text<s_Value2

vV Configure MSG;H;W;POS;CH;Y1;Y2
2 ONQ MSG
H W<Size
P0S<2+0.5x(H-_Height)
CH<>GetTextSize'W'
Slider.(Posn Size)<POS(_Height W)
Y1<«POS[1]-CH+1
Y2<POS[1]+_Height+1
Captionli_.Points<«1 2pY1,0
Caption2_.Points<«1 2pY2,0
Valuel .Points<«1 2pY1,W
Valuel .Points<«1l 2pY2,W

v

:EndClass a Dual

Value?

118 Dyalog APL/W Version 11 Release Notes

Writing Classes based on .Net Types

In Version 11.0 you may create user-defined Classes based upon .Net Classes. This
feature supercedes the NetType object through which this was achieved in previous
Versions of Dyalog APL.

To base a Class on a .Net Type, you simply specify the .Net Type as its Base Class.
However, you must also specify the .Net search path with one or more : Us ing
statements.

For example, the following Class called APLGreg derives from the .Net Type
GregorianCalendar which is located in the System.Globalization .Net namespace.

:Class APLGreg: GregorianCalendar
:Using System.Globalization

:éédclass
Exporting the Class

Unlike other Classes, a Class that derives from a .Net Type must be exported to a .Net
Assembly before it can be used. It must be turned into a fully fledged .Net Type before
you can access it through .Net.

You may either export your Class (or Classes) to a named Assembly file (DLL) on
disk, or you may take advantage of the new Version 11.0 feature and export it to
memory. This is done using the Export to Memory menu item on the Session File
menu. Export to Memory builds a temporary in-memory .Net Assembly and is intended
to speed the development cycle. Note however that in order to use the Class in a live
application, it will be necessary to save it to file.

Using the Class

If you have exported the Class to a Microsoft .Net Assembly (dll), you must specify the
correct .Net search path to locate the file using JUSING.

However, if you have exported the Class to memory (using Export to Memory), it is not
necessary to set JUSING.

Chapter 3 Using Classes with the Dyalog GUI and .Net 119

Example of a Class based on a .Net Type

The following example illustrates an APL Class that is based upon the .Net Type
MailMessage.

:Class MultiMail : MailMessage

:Using System

:Using System.Web.Mail,system.web.d1ll

a Adds "MultiSend" method to System.Web.Mail.MailMessage

A "MultiSend" sends one message to each To address (separa
ted by ";")

a So that each recipient sees self as sole addressee

OML<0

V r<MultiSend;to;all;t
:Access Public
:Signature Int32<«MultiSend
r<pto<«iy (';'=to)cto<«';',all«To
:For t :In to
To<t
SmtpMail.Send OTHIS
:EndFor
To<«all

:EndClass

The MultiMail Class adds a Mult iSend method to the basic

System.Web.Mail. MailMessage Type. Mu It i Send sends a separate message to each
of the recipients in the semi-colon separated address list. The result is the number of
recipients.

To use the Class, you must first export it as a .Net Assembly (in this case, using the
Export to Memory menu item on the Session File menu).

120

Dyalog APL/W Version 11 Release Notes

Eile Options

Declar
Declar

Emitte

ed Assembly DualogRctiveHorkspace
ed HModule DualogfActiveHorkspace
Declared Tupe MultiHail
Compiling Hethod "HultiSend"
Result tupe "Int32" resoluved to Sustem.Int3Zz
Compiled Hethod "HultiSend"
Emitted Tupe HultiMail
d Assembly "DualogActiveHorkspace”

Cloge

Note that when using a Class that has been exported to memory, it is not necessary to
set QUSING.

z

zZ.

z
z
z
z

2

<0ONEW MultiMail
To<+'mkrom@dyalog.com;mkrom@insight .dk'
.Subject<«'hello'
.From<«'mkrom@dyalog.com'

.Body<«'277222"

.MultiSend

The following points are noteworthy:

1. The : Signature statement in function Mu It i Send defines the signature
of the method. It specifies that MultiSend takes no argument and returns a
result of Type Int32 (which will be resolved to System.Int32 via JUSING)

2. Ofthetwo :Using statements, the first one is required to resolve the
reference to Int32 to System.Int32.

3. The second :Us ing statement is required to resolve the references to
MailMessage (in the : C lass statement) and SmtpMail (in Mu It i Send).

Chapter 3 Using Classes with the Dyalog GUI and .Net 121

Browsing Classes
Classes are represented by

Parrot and Domest icParrot.

icons. The picture below shows 3 classes: Bird,

4 Exploring f:\help11.0\ARROTS [#] M=
File Edit Wiew Columns Tools

P RXQE ~|[EEEE [e
Horkspace Tree Contents of #

R .

= OsE E

Parrot

3 object(s). 15.89Mb (166645824 bytes) free. 19532 bytes used (10456 bytes selected) in Local Scope

If you open Class nodes in the left-hand pane, the Explorer shows the Class hierarchy.
In this example, Domest icParrot is based upon Parrot which in turn is based

upon Bird.
4] Exploring f:\help11.0\PARROTS [#] =Jo/&d
File Edit Wiew Columns Tools
2BXQE = ([EEmEE [e
Horkspace Tree Contents of #
By
[‘:_':! Bird
=Ed DomesticParrot| Bird [Domestis Parrot
= 8 Parrot _Parrot |
e ED Bird
=-E3 Parrot
EBird
-5 OSE
|£_i 1] | |>|
3 objectis). 15.89Mb (16664824 bytes) free. 19532 bytes used {10456 bytes selected) in Local Scope

122

Dyalog APL/W Version 11 Release Notes

Browsing Class Scripts

Selecting Domest icParrot in the left-hand pane brings up its Class Script in the
right-hand pane.

] Exploring f:\help11.0\PARROTS [#] JoEd
File Edit Wiew Columns Tools
RXxQE | ([EEmE 3N
Horkspace Tree Contents of #.0omesticParrot
ER= R iClass DomesticParrot: Parrot
EIBird :Field Public Name
=-ED Domest icParrot
&8 parrot < ggglname species)
= 6 Bird iAccess Fublic
a Tl Implements Constructor :Base species
=& Parrot ODF Mame+name
EJ Bird =
== OSE
= gggl
‘Access Public
:Implements Constructor :Base 'Generic'
OC0F Mame<'Polly'
=
< R+Epeak
‘Access Public
R<0OBASE.Speak, ' Hho's a pretty bou,thent'
=
tEndClass & DomesticParrot
£] T | [Ii Mamespace Shape: Pos: 0,0
3 objeck(s). 15.89Mb (16664824 bytes) free.

Chapter 3 Using Classes with the Dyalog GUI and .Net 123

... and selecting Parrot in the left-hand pane brings up the Class Script for Parrot.

| Exploring f:\help11.0\PARROTS [#]

BE)

File Edit Wiew Columns Tools

S| =N=R=HIFT

ob B B

Horkspace Tree

Contents of #.DomesticParrot.Parrot

(&g OSE

[

q 3 I_:‘ar*r“ut
Epird

iClass Parrot: Bird

¥ pgg species
‘Access Public Instance

:Implements Constructor :Base 'Parrot:

=

= Reipeak
‘Access Public
Re'Squark™

=

‘EndClass A Parrot

',species

I | (2]

Mamespace Shape:

Pos: 0,0

3 objeck(s), 15.85Mb (16617212 bytes) free.

124

Dyalog APLIW Version 11 Release Notes

... and finally, selecting Bird in the left-hand pane brings up the Class Script for

Bird.

4 Exploring f:\help11.0\PARROTS [#]

B[=1 %

File Edit Wiew Columns Tools

iEndClass A Bird

rmXQE o[G0 me e
Horkspace Tree Contents of #.0omesticParrot.Parrot.Bird
ey 8 iClass Bird
- LEABird :Field Public Species
E[ﬂ DomesticParrot
- = Parrot ¥ 899 SpeC

iAccess Public Instance

s a Implements Constructor
=18 Parrot Species+spec
! CEBird =
-2 OSE
= R+Epeak
‘Access Public
Re'Tueet, tweet!'
=

(%] I [] Mamespace Shape:

Pos: 0,0

3 objeck(s), 15.85Mb (16617212 bytes) free.

125

CHAPTER 4

Language Enhancements

New and Improved Primitive Functions & Operators

New Primitive Functions & Operators

0 Index
0r] Index with Axes
% Power Operator

Improved Primitive Functions & Operators

A And, Lowest
Common Multiple

v Or, Greatest
Common Divisor

126 Dyalog APL/W Version 11 Release Notes

And, Lowest Common Multiple:

R<XAY

Case 1: x and v are boolean

.R is boolean is determined as follows:

Note that the ASCII caret (*) will also be interpreted as an APL And (»).

Example

0101 A 0011

00 0 1

Case 2: x and v are numeric (non-boolean)

R is the lowest common multiple of X and Y.

Example

15 1 2 7 A 35 1 4 0

105 1 4 0

X

Y

B OO

=, O RFr O

=, O OO

Chapter 4:

Language Enhancements 127

Or, Greatest Common Divisor:

R<«XvY

Case 1: x and v are boolean
R is boolean and is determined as follows:

X Y | R

kR oo
kOoORr o
I =]

Example

0011 v 0101
01 11

Case 2: x and v are numeric (non-boolean)
R is the Greatest Common Divisor of X and Y.

Example

15 1 2 7 v 35 1 4 0
5127

128

Dyalog APL/W Version 11 Release Notes

Index:

R«{X}0Y

Dyadic case

X must be a scalar or vector of depth <2 of integers each >0I0. Y may be any array. In
general, the result R is similar to that obtained by square-bracket indexing in that:

(r g ... 07Y) =7Y[I;d;...1
The length of left argument X must be equal to the rank of right argument Y.
Note that in common with square-bracket indexing, items of the left argument X may
be of any rank and that the shape of the result is the concatenation of the shapes of the
items of the left argument:

(pXx0Y) = 4,/97X

Index is sometimes referred to as squad indexing.

Note that index may be used with selective specification.
010 is an implicit argument of index.

Examples
01o«1
VEC<«111 222 333 Uiy
30VEC
333
(e4 3)0OVEC
Luyy 333

(c2 3p3 1 4 1 2 3)0VEC
333 111 4uh
111 222 333

O<«MAT«101"13 4

11 12 13 14
21 22 23 24
31 32 33 34

2 1[MAT
21

3(2 1)0MAT
32 31

(2 3)10MAT
21 31

(2 3)(,1)0MAT
21
31

Chapter 4: Language Enhancements 129

p(2 1p1)(3 4p2)IMAT

2 1 3 4
po e[MAT
0 0
(3(2 1)0OMAT)«0 o MAT a Selective assignment.

11 12 13 14
21 22 23 24
0 0 33 34

Monadic case

If Y is an array, Y is returned.

If Y is a ref to an instance of a Class with a Default property, all elements of the Default
property are returned. For example, if It em is the default property of ¥yC Iass, and
imc is an Instance of MyC lass, then by definition:

imc.Items=[imc

Version 11.0 issues a NONCE ERROR if the Default Property is Keyed, because in this
case APL has no way to determine the list of all the elements. A future version will
probably introduce a way for a class to define an ordered "key set" for a Keyed
property, at which point monadic squad will be extended to return the corresponding
elements.

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic p , 4+, v, 2) as opposed to functions that
operate on the values of the index set (functions such as +,[, L, p"), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to the
PropertyGet and PropertySet functions is the same as the set of functions that applies to
selective specification.

If for example, CompF i Ie is an Instance of a Class with a Default Numbered
Property, the expression:

1+¢0CompFile

would only call the PropertyGet function (for CompF i I1e) once, to get the value of the
last element.

130

Dyalog APL/W Version 11 Release Notes

Note that similarly, the expression
10000p0CompFile

would call the PropertyGet function 10000 times, on repeated indices if CompFile
has less than 10000 elements. The deferral of access function calls is intended to be an
optimisation, but can have the opposite effect. You can avoid unnecessary repetitive
calls by assigning the result of [to a temporary variable.

Index with Axes: R«{X}0[K]Y

X must be a scalar or vector of depth <2, of integers each >[070. Y may be any array. X
is a simple scalar of vector specifying axes of Y. The length of X must be the same as
the length of X:

(p,X) = p,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J 001 31 Y <> Y[I;;J]

Note that index with axis may be used with selective specification. 0I0 is an implicit
argument of index with axis..

Examples
00«1

O«CUBE<10L"12 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214y
221 222 223 224
231 232 233 234

20[11CUBE
211 212 213 214
221 222 223 22u
231 232 233 234

20[31CUBE
112 122 132
212 222 232

Chapter 4: Language Enhancements

131

11y
21y

111
121
131

[e)

CUBE[;;2]

(1 3)u0[2 3]CUBE

134
234

CUBE[;1 3;4]

(2(1 3)0C1 3]CUBE)<0 o CUBE

112 1183
122 123
132 1383

212
222
232

0
0
0

11y
124
134

21y
224
234

20[31CUBE

(1 3)40[2 3]1CUBE

n Selective assignment.

132 Dyalog APL/W Version 11 Release Notes

Power Operator: {R}+{X}(f*g)Y

If right operand g is a numeric integer scalar, power applies its left operand function f
cumulatively g times to its argument. In particular, g may be boolean 0 or 1 for
conditional function application.

If right operand g is a scalar-boolean-returning dyadic function, then left operand
function f is applied repeatedly until (Y g f Y) or until a strong interrupt occurs. In
particular, if g is = or =, the result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:
X (f x g) Y > (Xof ¥ g) Y

A negative right operand g applies the inverse of the operand function £, (| g) times.
In this case, £ may be a primitive function or an expression of primitive functions
combined with primitive operators:

° compose
. each
°. outer product
= commute
(] axis

scan
* power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument g generates DOMAIN ERROR.

Chapter 4: Language Enhancements

133

Examples

14

7

1.

32

(,e0ce,%(1==,vec))vec

a b c«1 0 1{(<*xa)w) abc

cap<{(aa*xa)w}

a b c«1 0 1eccap abc
succ<lo+

(succ*4)10

(succ* 3)10

1+o+¥x=1
618033989

f«(320+)0(%x01.8)
f 0 100
212
c+fx 1
c 32 212
100

invs<«{(ao* 1)w}

+\invs 1 3 6 10
2 3 4

2011nvs 9
0 0 1

dual<{ww* 1 oo ww w}
mean<{(+/w)+pwl}

mean duale 1 2 3 4 5

.605171085

+/dual+ 1 2 3 4 5

.43795620u4Y4

mean dual(x=<)1 2 3 4 5

.31662479

ydualt 'hello' 'world'

hw eo Ir 11 od

ravel-enclose if simple.

enclose first and last.

conditional application.

enclose first and last.
successor function.

fourth successor of 10.

third predecessor of 10.

fixpoint: golden mean.

Fahrenheit from Celsius.

c is Inverse of f.

Celsius from Fahrenheit.

inverse operator.

scan inverse.

decode inverse.

dual operator.
mean function.

geometric mean.

parallel resistance.

root-mean-square.

vector transpose.

134 Dyalog APL/W Version 11 Release Notes

New and Improved System Functions & Commands

New System Functions & Commands

OBASE Base Class
OCLASS Class

ODF Display Form
Orix Fix Script

OINSTANCES | Instances

ONEW New Instance
OSRC Source
OTHIS This Space

Improved System Functions & Commands

0D Edit Object

anc Name Class
anvz Name List

gpp Print Precision
Oowx Window Expose
YED Edit Object

Chapter 4: Language Enhancements 135

Base Class: R«[BASE.Y

OBASE is used to access the base class implementation of the name specified by Y.

Y must be the name of a Public member (Method, Field or Property) that is provided by
the Base Class of the current Class or Instance.

OBASE is typically used to call a method in the Base Class which has been superseded
by a Method in the current Class.

Note that JBASE .Y is special syntax and any direct reference to JBASE on its own or
in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class Domest icParrot derives from Class Parrot and
supersedes its Speak method. Domest icParrot .Speak calls the Speak method
in its Base Class Parrot, via JBASE.

:Class Parrot: Bird
V R<«Speak
:Access Public
R«<'Squark!'
v
:EndClass a Parrot

:Class DomesticParrot: Parrot
V R<«Speak
:Access Public
R«<[JBASE.Speak,' Who's a pretty boy,then!'
v
:EndClass a DomesticParrot

Maccaw<[NEW Parrot
Maccaw.Speak
Squark!

Polly<[NEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy,then!

136 Dyalog APL/W Version 11 Release Notes

Class:

R«{X}[OCLASS Y

Monadic Case

Monadic JCLASS returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.

R is a vector or vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
;éﬁdClass a Animal
:Class Bird: Animal
;éﬁdclass @ Bird
:Class Parrot: Bird
;éﬁdclass a Parrot
OCLASS Eeyore<[UNEW Animal

#.Animal
OCLASS Robin<[NEW Bird

#.Bird #.Animal
OCLASS Polly<[NEW Parrot
#.Parrot #.Bird #.Animal

OCLASS™ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

Chapter 4: Language Enhancements 137

Example 2

The Penguin Class example (see page 76) illustrates the use of Interfaces.

In this case, the Pengu in Class derives from Anima I (as above) but additionally
supports the BirdBehaviour and FishBehav iour Interfaces, thereby inheriting
members from both.

Pingo<[NEW Penguin
0CLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case

If X is specified, ¥ must be a reference to an Instance of a Class and X is a reference to

an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y,and is used as a cast in order to
access members of Y that correspond to members of Interface of (Base) Class X.

Example 1:

Once again, the Penguin Class example (see page 76) is used to illustrate the use of
Interfaces.

Pingo<[NEW Penguin
0CLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour UOCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour UOCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour UOCLASS Pingo).Sing
Croak, Croak!

138 Dyalog APL/W Version 11 Release Notes

Example 2:

This example illustrates the use of dyadic 0C LASS to cast an Instance to a lower Class
and thereby access a member in the lower Class that has been superseded by another
Class higher in the tree.

Polly<[NEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy,then!

Note that the Speak method invoked above is the Speak method defined by Class
Domest icParrot, which supersedes the Speak methods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes
Parrot and Bird.

(Parrot [CLASS Polly).Speak
Squark!

(Bird OCLASS Polly).Speak
Tweet, tweet!

Chapter 4: Language Enhancements 139

Display Form: R«<(DF Y
ODF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Y must be a simple character array that specifies the display form of a namespace. If
defined, this array will be returned by the format functions and OFMT instead of the
default for the object in question. This also applies to the string that is displayed when
the name is referenced but not assigned (the default display).

The result R is the previous value of the Display Form which initially is ONU L L.

'"F'OWC'Form!
3F
#.F
peF
3
OFMT F
#.F
pOFMT F
1 3
F o default display uses %
#.F
F.(ODF 'Pete's Form'
3F
Pete's Form
peF
11
OFMT F
Pete's Form
pOFMT F
1 11

Notice that ODF will accept any character array, but JFMT always returns a matrix.

F.ODF 2 2 s5p04
F

ABCDE

FGHIJ

KLMNO
PQRST
peF

140 Dyalog APL/W Version 11 Release Notes

p0<0OFMT F
ABCDE
FGHIJ

KLMNO
PQRST
5 5

Note that ODF defines the Display Form statically, rather than dynamically.

'"F'OWC'Form' 'This is the Caption'

F
#.F

F.(ODF Caption)s make current caption the display fo
rm

F
This is the Caption

F.Caption«'New Caption' s changing caption does not
change the display form

F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
V Make arg
:Access Public
:Implements Constructor
ODr arg
v
:EndClass a MyClass

PD<[INEW MyClass 'Pete'
PD
Pete

Chapter 4: Language Enhancements 141

It is possible to set the Display Form for the Root and for 0SE

JCLEAR
clear ws
#
#
ODF OWSID
#
CLEAR WS
OSE
OSE
OSE.(ODF 'Session'
OSE
Session

Note that ODF applies directly to the object in question and is not automatically applied
in a hierarchical fashion.

IXIDNS Tt
X
#.X
IYIX‘DNS Tt
X.Y
#.X.Y
X.0ODF 'This is X'
X
This is X
X.Y

#.X.Y

142

Dyalog APL/W Version 11 Release Notes

Edit Object: {R}Y«{X}OED Y

OED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many elements
as there are names in Y. Each element of X specifies the type of the corresponding
(new) object named in Y, where :

v function/operator

-~ | simple character vector

€ vector of character vectors

- character matrix

® Namespace script

o Class script

o Interface

If an object named in Y already exists, the corresponding type specification in X is
ignored.

If0ED is called from the Session, it opens Edit windows for the object(s) named in ¥
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by JED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using) ED.

If OED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, and in Dyalog APL for DOS/386, the Edit windows are
automatically displayed in "full-screen" mode (ZOOMED). In all implementations, the
user is restricted to those windows named in Y. The user may not skip to the Session
even though the Session may be visible

OED terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been changed, and has the same structure as Y.

Chapter 4: Language Enhancements 143

Fix Script:

R«{X}OFIX Y

OFIX fixes a Class from the script specified by Y.

Y must be a vector of character vectors (scalars) that contains a well-formed Class
script. If so, R is a reference to the new Class fixed by OF I X.

The Class specified by ¥ may be named or unnamed.

If specified, X must be a numeric scalar numeric. If X is omitted or non-zero, and the
Class script Y specifies a name (for the Class), OF I X establishes that Class in the
workspace.

If X is 0 or the Class specified by Y is unnamed, the Class is not established per se,
although it will exist for as long as a reference to it exists.

In the first example, the Class specified by Y is named (MyC 1 ass) but the result of
OFIX is discarded. The end-result is that MyC lass is established in the workspace as
a Class.

O0«0FIX ':Class MyClass' ':EndClass'
#.MyClass

In the second example, the Class specified by Y is named (MyC lass) and the result of
OFIX is assigned to a different name (MYREF). The end-result is that a Class named
MyC lass is established in the workspace, and MYREF is a reference to it.

MYREF<[FIX ':Class MyClass' ':EndClass'
JCLASSES
MyClass MYREF
ONC'MyClass' 'MYREF'
9.4 9.4
MYREF
#.MyClass

In the third example, the left-argument of 0 causes the named Class MyC lass to be
visible only via the reference to it (MY REF). It is there, but hidden.

MYREF<0 Q0OFIX ':Class MyClass' ':EndClass'
YJCLASSES

MYREF
MYREF

#.MyClass

144 Dyalog APL/W Version 11 Release Notes

The final example illustrates the use of un-named Classes.

MYREF

Pete

src<':Class' 'vMake n'

src,«'Access Public' 'Implements Constructor'
src,«'DF n' 'v' ':EndClass'

MYREF<[QFIX src

JCLASSES

MYINST<[ONEW MYREF'Pete'
MYINST

Chapter 4: Language Enhancements 145

Instances:

R«[JINSTANCES Y

OINSTANCES returns a list all the current instances of the Class specified by Y.

Y must be a reference to a Class.
R is a vector of references to all existing Instances of Class Y.

Examples

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
;éﬁdClass a Animal
:Class Bird: Animal
;éﬁdclass @ Bird
:Class Parrot: Bird
;éﬁdclass a Parrot

Feyore<[NEW Animal
Robin<[NEW Bird
Polly<[NEW Parrot

OINSTANCES Parrot
#.[Parrot]

OINSTANCES Bird
#.[Bird] #.[Parrot]

OINSTANCES Animal
#.(Animal] #.[Bird] #.[Parrot]

Eeyore.[IDF 'eeyore'
Robin.UDF 'robin'
Polly.ODF 'polly'

146 Dyalog APL/W Version 11 Release Notes

OINSTANCES Parrot
polly

OINSTANCES Bird
robin polly

OINSTANCES Animal
eeyore robin polly

Name Classification: R<[NC Y

Y must be a simple character scalar, vector, matrix ,or vector of vectors that specifies a
list of names. R is a simple numeric vector containing one element per name in Y.

Each element of R is the name class of the active referent to the object named in Y.

If Y is simple, a name class may be:

Name Class | Description

"1 invalid name

0 unused name

1 Label

2 Variable

3 Function

4 Operator

9 Object (GUI, namespace, COM, .Net)

Chapter 4: Language Enhancements 147

If Y is nested, a more precise analysis of name class is obtained whereby different
types of functions (primitive, traditional defined functions, D-fns) are identified by a
decimal extension. For example, defined functions have name class 3.1, D-fns have
name class 3.2, and so forth. The complete set of name classification is as follows:

Array (2) | Functions (3) | Operators (4) | Namespaces (9)

n.1 Variable Traditional Traditional Created by ON.S
n.2 Field D-fns D-ops Instance
n.3 Property Derived
Primitive
n.4 Class
n.5 N/A Interface
n.6 External External External Class
Shared
n.7 External Interface

In addition, values in R are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

Variable (Name-Class 2.1)

Conventional APL arrays have name-class 2.1.

NUM<88
CHAR<'"Hello World'

ONC +'NUM' 'CHAR'

2 2
ONC 'NUM' 'CHAR'
2.1 2.1
'MYSPACE'ONS '!
MYSPACE .VAR<«10
MYSPACE .0NC'VAR'
2

MYSPACE .ONC<'VAR'

148 Dyalog APL/W Version 11 Release Notes

Field (Name-Class 2.2)

Fields defined by APL Classes have name-class 2.2.

:Class nctest
:Field Public pubFld
:Field pvtrid

V r<NC x
:Access Public
r<[NC x

v

:EndClass a nctest
ncinst<«[NEW nctest

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

ncinst .NC'pubFIld' 'pvtFld'
2.2 2.2

Note that an internal Method sees both Public and Private Fields in the Class Instance.
However, when viewed from outside the instance, only public fields are visible

ONC 'ncinst.pubFId' 'ncinst.pvtFIld'
2.2 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if ONC is executed inside
this space:

ncinst .ONC'pubFId' 'pvtFld'
2.2 0

Note that the names of Fields are reported as being unused if the argument to ONC is
simple.

ncinst .ONC 2 6p'pubFldpvtFId'

Chapter 4: Language Enhancements 149

Property (Name-Class 2.3)

Properties defined by APL Classes have name-class 2.3.

:Class nctest
:Field pvtF1d<99

:Property pubProp
:Access Public
V r<get
r«<pvtrid
v
:EndProperty

:Property pvtProp
V r<get
r«<pvtrid
v
:EndProperty

V r<NC x
:Access Public
r<[NC x

v

:EndClass a nctest

ncinst<«[NEW nctest

The name-class of a Property, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.3.

ncinst .NC'pubProp' 'pvtProp'
2.3 2.3

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties are
visible

ONC 'ncinst.pubProp' 'ncinst.pvtProp'

2.3 0

150 Dyalog APL/W Version 11 Release Notes

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if ONC is executed inside
this space:

ncinst .ONC 'pubProp' 'pvtProp'
2.3 0

Note that the names of Properties are reported as being unused if the argument to ONC
is simple.

ncinst .ONC 2 6p'pubProppvtProp'

External Properties (Name-Class 2.6)

Properties exposed by external objects (.Net and COM and the APL GUI) have name-
class “2. 6.

OUSING<«'System'

dt«[JNEW DateTime (2006 1 1)

dt.0ONC 'Day' 'Month' 'Year'
2.6 2.6 2.6

'ex' OWC 'OLEClient' 'Excel.Application'
ex.[NC 'Caption' 'Version' 'Visible'
2.6 2.6 2.6

'f'OWC'Form!
f.0ONC'Caption' 'Size!
2.6 2.6

Note that the names of such Properties are reported as being unused if the argument to
gnc is simple.

f.ONC 2 7p'CaptionSize !

Chapter 4: Language Enhancements

151

Defined Functions (Name-Class 3.1)

Traditional APL defined functions have name-class 3.1.

V R<AVG X
(1] R<(+/X)+pX
v
AVG 1100
50.5
ONC'AVG!
3
(ONCc'4VG!
3.1
"MYSPACE'ONS '"AVG'
MYSPACE .AVG 1100
50.5
MYSPACE .[ONC ' AVG'
3
ONC<c'MYSPACE .AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment

retains its name-class.

MEAN<AVG
ONC'AVG' '"MEAN'
3.1 3.1

Whereas, the name of a function that amalgamates a defined function with any other

functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN<AVGo ,
ONC'AVG' 'VMEAN'
3.1 3.3

152 Dyalog APL/W Version 11 Release Notes

D-Fns (Name-Class 3.2)

D-Fns (Dynamic Functions) have name-class 3.2

Avg<{(+/w)+puw}
ONC'Avg!

ONCc'Avg!

Derived Functions (Name-Class 3.3)

Derived Functions and functions created by naming a Primitive function have name-
class 3.3.

PLUS<«+

SUM<~+/

CUM<PLUS\

ONC'PLUS' 'SUM' 'CUM'
3.3 3.3 3.3

ONC 3 4p'PLUSSUM CUM !
3 3 3

Note that a function that is simply cloned from a defined function by assignment
retains its name-class. Whereas, the name of a function that amalgamates a defined
function with any other functions has the name-class of a Derived Function, i.e. 3.3.

V R<AVG X
(1] R<(+/X)+pX
v

MEAN<AVG

VMEAN<AVGo ,

ONC'AVG' 'MEAN' 'VMEAN'
3.1 3.1 3.3

Chapter 4: Language Enhancements 153

External Functions (Name-Class 3.6)

Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class ~ 3. 6. Methods exposed by External Functions created using ONA and 0SH all
have name-class 3. 6.

avx
ol

'"F'OWC'Form'

F.ONC'GetTextSize' 'GetFocus'
3.6

'"EX'OWC'OLECIlient' 'Excel.Application'
EX.ONC 'Wait' 'Save' 'Quit'
"3.6 3.6

OUSING<«'System'

dt«[NEW DateTime (2006 1 1)
dt .ONC 'AddDays' 'AddHours'
3.6

'beep'lINA'user32|MessageBeep 1i'
ONC ' beep'
ONCc'beep'!
'xutils'OSH"'
JFNS
box dbr getenv hex ltom

Ss vtol
(ONC'hex' 'ss'

3.6 3.6

Itov mt

154 Dyalog APL/W Version 11 Release Notes

Operators (Name-Class 4.1)

Traditional Defined Operators have name-class 4.1.

VFILTERV
V VEC<«~(P FILTER)VEC a Select from VEC those elts .
[1] VEC<(P'VEC)/VEC o for which BOOL fn P is true.
v
ONC'FILTER'
mn
ONC<'FILTER'
b.1

D-Ops (Name-Class 4.2

D-Ops (Dynamic Operators) have name-class 4.2.

pred<{0I0 OML<«1 3 a Partitioned reduction.
sao/ " (a/1pa)cw

}

2 3 3 2 +pred 110
3 12 21 19

ONC'pred’

ONCec'pred!

External Events (Name-Class 8.6)

Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-class
"8.6.

f<[NEW'Form' ('Caption' 'Dyalog GUI Form')

f.ONC'Close!' 'Configure' 'MouseDown'
8.6 8.6 8.6

xI«<0ONEW'OLEClient'(<c'ClassName' 'Excel.Application')
xI1.0ONL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick

x1.0nc 'SheetActivate' 'SheetCalculate'
8.6 8.6

Chapter 4: Language Enhancements 155

OUSING<«'System.Windows.Forms,system.windows.forms.dl1'
ONC,c'Form'

9.6
Form.ONL -8

Activated BackgroundImageChanged BackColorChanged

Namespaces (Name-Class 9.1)

Plain namespaces created using ONS have name-class 9.1.

'MYSPACE' QONS '!'
ONC'MYSPACE'

ONCc'MYSPACE'

Note however that a namespace created by cloning, where the right argument to ONS is
a [JOR of a namespace, retains the name-class of the original space.

'CopyMYSPACE'(ONS JOR '"MYSPACE'
"CopyF'ONS OOR 'F'OWC'Form'

ONC'MYSPACE' 'F'!
9.1 9.2

ONC'CopyMYSPACE' 'CopyF'!
9.1 9.2

The Name-Class of .Net namespaces (visible through JUSING) is also 9.1

OQUSING<'"
ONC 'System' 'System.IO'
9.1 9.1

Instances (Name-Class 9.2)

Instances of Classes created using ONEW, and GUI objects created using OWC all have
name-class 9.2.

MyInst<[ONEW MyClass
ONC'MyInst'

ONCc'MyInst'
UrInst<[NEW [OFIX ':Class' ':EndClass'

ONC 'MyInst' 'UrInst'
9.2 9.2

156 Dyalog APL/W Version 11 Release Notes

'"F'OWC 'Form'
'F.B' OWC 'Button'
ONC 2 3p'F F.B!

9 9

gNC'F' 'F.B'
9.2 9.2

F.ONC'B!
9

F.ONCe, 'B!
9.2

Instances of COM Objects whether created using OwC or ONEW also have name-class

9.2.
xI«<0ONEW'OLEClient'(<c'ClassName' 'Excel.Application')
'"XL'OWC'OLECIlient' 'Excel.Application'
Onc'xIl' 'XL'

9.2 9.2

The same is true of Instances of .Net Classes (Types) whether created using ONEW or

.New.
OUSING<«'System'
dt<[NEW DateTime (34+0TS)
DT<DateTime.New 3+[0TS
OnNCc 'dt' 'DT!

9.2 9.2

Note that if you remove the GUI component of a GUI object, using the Detach method,
it reverts to a plain namespace.

F.Detach
ONCec,'F!
Correspondingly, if you attach a GUI component to a plain namespace using the

monadic form of OWC, it morphs into a GUI object

F.OWC 'PropertySheet'
ONCe,'F!

Chapter 4: Language Enhancements 157

Classes (Name-Class 9.4)

Classes created using the editor or JF I X have name-class 9.4.

JED oMyClass

:Class MyClass
V r<NC x
:Access Public Shared
r<QnNC x
v
:EndClass a MyClass

ONC 'MyClass'

9
ONCc'MyClass'

9.4
OFIX ':Class UrClass' ':EndClass'
ONC 'MyClass' 'UrClass'

9.4 9.4

Note that the name of the Class is visible to a Public Method in that Class, or an
Instance of that Class.

MyClass.NC'MyClass'

MyClass.NCc'MyClass'

Interfaces (Name-Class 9.5)

Interfaces, defined by : Interface ... :EndInterface clauses, have name-
class 9.5.

158 Dyalog APL/W Version 11 Release Notes

:Interface IGolfClub
:Property Club

V r<get

v

vV set

v
:EndProperty

vV Shank«<Swing Params
v

:EndInterface o IGolfClub
ONC 'IGolfClub'

ONC <'IGolfClub'

External Classes (Name-Class 9.6)

External Classes (Types) .exposed by .Net have name-class 9.6.

OUSING<«'System' 'System.IO!'

ONC 'DateTime' 'File' 'DirectoryInfo'
9.6 9.6 9.6

Note that referencing a .Net class (type) with ONC, fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the class when the name is next used.

External Interfaces (Name-Class 9.7)

External Interfaces exposed by .Net have name-class 9.7.

OUSING<«'System.Web.UI,system.web.d1l'

(ONC 'IPostBackDataHandler' 'IPostBackEventHandler'
9.7 9.7

Note that referencing a .Net Interface with ONC, fixes the name of that Interface in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the Interface when the name is next used.

Chapter 4: Language Enhancements 159

New Instance: R<(ONEW Y

ONEW creates a new instance of the Class or .Net Type specified by Y.

Y must be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a
.Net Type, or a character vector containing the name of a Dyalog GUI object. The
second item, if specified, contains the argument to be supplied to the Class or Type
Constructor.

The result R is a reference to a new instance of Class or Type Y.

Class Example

:Class Animal
Vv Name nm
:Access Public
:Implements Constructor
(ODF nm
v
:EndClass a Animal

Donkey<[NEW Animal 'Eeyore'
Donkey
Eeyore

If ONEW is called with just a Class reference (i.e. without parameters for the
Constructor), the default constructor will be called. A default constructor is defined by
a niladic function with the : Implements Constructor attribute. For example,
the Anima I Class may be redefined as:

:Class Animal
vV NoName
:Access Public
:Implements Constructor
(ODF 'Noname'
v
vV Name nm
:Access Public
:Implements Constructor
(ODF nm
v
:EndClass a Animal

Horse<[IJNEW Animal
Horse
Noname

160 Dyalog APL/W Version 11 Release Notes

.Net Examples

OUSING<'System' 'System.Web.Mail,System.Web.dIl'
dt«[ONEW DateTime (2006 1 1)
msg«[NEW MailMessage
ONC 'dt' 'msg' 'DateTime' 'MailMessage'
9.2 9.2 9.6 9.6

Note that .Net Types are accessed as follows.

If the name specified by the first item of ¥ would otherwise generate a

VALUE ERROR,and QUSING has been set, APL attempts to load the Type specified
by Y from the .Net assemblies (DLLs) specified in JUSING. If successful, the name
specified by Y is entered into the SYMBOL TABLE with a name-class of 9. 6.
Subsequent references to that symbol (in this case DateT ime) are resolved directly
and do not involve any assembly searching.

F<«[NEW c'Form'
F<ONEW'Form' (('Caption' 'Hello')('Posn' (10 10)))

ONEW'Form' (('Caption' 'Hello')('Posn' (10 10)))
#.[Form]

Name List: R«{X}ONL Y

Y must be a simple numeric scalar or vector containing one or more of the values for
name-class See also the system function ONC.

X is optional. If present, it must be a simple character scalar or vector. R is a list of the
names of active objects whose name-class is included in Y in standard sorted order.

If any element of Y is negative, R is a vector of character vectors. Otherwise, R is
simple character matrix.

Furthermore, if ON L is being evaluated inside the namespace associated with a Class or
an Instance of a Class, and any element of Y is negative, R includes the Public names
exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If X is supplied, R contains only those names which begin with any character of X.
Standard sorted order is the collation order of JAV.

Chapter 4: Language Enhancements 161

If an element of Y is an integer, the names of all of the corresponding sub-name-classes
are included in R. For example, if Y contains the value 2, the names of all variables
(name-class 2.1), fields (2.2), properties (2.3) and external or shared variables (2.6) are
obtained. Otherwise, only the names of members of the corresponding sub-name-class
are obtained.

Examples:

ONL 2 3
A
FAST
FIND
FOoo

"Av' ONL 2 3

ONL 79
Animal Bird BirdBehaviour Coin Cylinder DomesticParr
ot Eeyore FishBehaviour Nickel Parrot Penguin Polly
Robin
ONL 9.3 a Instances
Eeyore Nickel Polly Robin
ONL 9.4 a Classes
Animal Bird Coin Cylinder DomesticParrot Parrot Pen
guin
ONL 9.5 a Interfaces
BirdBehaviour FishBehaviour

ONL can also be used to explore Dyalog GUI Objects, .Net types and COM objects.

Dyalog GUI Objects

0N L may be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

'F' OWC 'Form'

F.ONL -2 o Properties
Accelerator AcceptFiles Active AlphaBlend AutoConf B
order BCol Caption

F.ONL -3 a Methods
Animate ChooseFont Detach GetFocus GetTextSize ShowsS
IP Wait

F.ONL -8 a Events
Close C(Create DragDrop Configure ContextMenu DropFiles
DropObjects Expose Help

162

Dyalog APL/W Version 11 Release Notes

.Net Classes (Types)

ONL can be used to explore .Net types.

When a reference is made to an undefined name, and JUSING is set, APL attempts to
load the Type from the appropriate .Net Assemblies. If successful, the name is entered
into the symbol table with name-class 9.6.

OUSING<'System'
DateTime
(System.DateTime)
ONL -9
DateT ime
ONC,c'DateTime'
9.6

The names of the Properties and Methods of a .Net Type may then be obtained using
ONL.

DateTime.[ONL -2 a Properties
MaxValue MinValue Now Today UtcNow

DateTime.[ONL -3 a Methods
get_Now get_Today get_UtcNow op_Addition op_Equality

In fact it is not necessary to make a separate reference first, because the expression
Type.ONL (where Type is a .Net Type) is itself a reference to Type. So, (with
OUSING still setto 'System?'):

Array .ONL -3
BinarySearch Clear Copy CreatelInstance IndexOf LastI
ndex0f Reverse Sort

ONL -9
Array DateTime

Chapter 4: Language Enhancements 163

Another use for NI is to examine .Net enumerations. For example:

OUSING<«'System.Windows.Forms,system.windows.forms.dl

FormBorderStyle.[ONL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

FormBorderStyle.FixedDialog.value__

FormBorderStyle.({w,[1.5]¢ w, c'.value__'"}YONL -2)

Fixed3D

FixedDialog

FixedSingle 1

FixedToolWindow 5

None 0

Sizable [

SizableToolWindow 6

COM Objects

Once a reference to a COM object has been obtained, JNL may be used to obtain lists
of its Methods, Properties and Events.

xI«<0ONEW'OLECIlient'(<c'ClassName' 'Excel.Application')

x1.0NL -2 a Properties
_Default ActiveCell ActiveChart ActiveDialog ActiveMe
nuBar ActivePrinter ActiveSheet ActiveWindow

x1.0ONL -3 a Methods
_Evaluate _FindFile _Run2 _Wait _WSFunction Activate
MicrosoftApp AddChartAutoFormat AddCustomList Browse C
alculate

ONL -9
x1

164 Dyalog APL/W Version 11 Release Notes

Source: R«<[SRC Y

OSRC returns the script that defines the Class Y.

Y must be a reference to a Class.
R is a vector of character vectors containing the script that was used to define Class Y.

JED oMyClass

:Class MyClass
V Make Name
:Implements Constructor
ODF Name
v
:EndClass a MyClass

Z<[SRC MyClass
pZ

0z
14 15 29 14 5 19
6 1pZ
:Class MyClass
V Make Name
:Implements Constructor
ODF Name
v
:EndClass m MyClass

Chapter 4: Language Enhancements 165

This Space:

R<[OTHIS

OTHIS returns a reference to the current namespace, i.e. to the space in which it is
referenced.

If NC 9 is areference to any object whose name-class is 9, then:

NC9=NC9.(JTHIS

1
Examples
OTHIS
#
IXIDNS 11
X.0OTHIS
#.X
'"F'OWC'Form!
'F.B'OWC'Button'
F.B.OTHIS
#.F.B

Polly<[NEW Parrot
Polly.OTHIS

#.[Parrot]

An Instance may use JTHIS to obtain a reference to its own Class:

Polly.(>o0CLASS OTHIS)

#.Parrot

or a function (such as a Constructor or Destructor) may identify or enumerate all other
Instances of the same Class:

Polly.(pUOINSTANCES>>o0CLASS OTHIS)

166 Dyalog APL/W Version 11 Release Notes

Window Expose: Owx

OWX is a system variable that determines:

a) whether or not the names of properties, methods and events provided by a
Dyalog APL GUI object are exposed.

b) certain aspects of behaviour of .Net and COM objects. See External Object
behaviour.

The permitted values of OWX are 0, 1, or 3. Considered as a sum of bit flags, the first bit
in WX specifies (a), and the second bit specifies (b).

If Owx is 1 (1% bit is set), the names of properties, methods and events are exposed as
reserved names in GUI namespaces and can be accessed directly by name. This means
that the same names may not be used for global variables in GUI namespaces.

If OwX is 0, these names are hidden and may only be accessed indirectly using OWG and
aws.

IfOWX is 3 (2™ bit is also set) COM and .Net objects adopt the Version 11 behaviour,
as opposed to the behaviour in previous versions of Dyalog APL.

Note that it is the value of WX in the object itself, rather than the value of OWX in the
calling environment, that determines its behaviour.

The value of OW X in a clear workspace is defined by the default wx parameter (see
User Guide) which itself defaults to 3.

0w X has namespace scope and may be localised in a function header. This allows you
to create a utility namespace or utility function in which the exposure of objects is
known and determined, regardless of its global value in the workspace.

Chapter 4: Language Enhancements 167

List Classes: JCLASSES
This command lists the names of APL Classes in the active workspace.
Example:
JCLEAR

clear ws
JED oMyClass

:Class MyClass
V Make Name
:Implements Constructor
ODF Name
v
:EndClass a MyClass

JCLASSES
MyClass
JCOPY 00 YourClass
.\00 saved Sun Jan 29 18:32:03 2006
JCLASSES
MyClass YourClass
ONC 'MyClass' 'YourClass'
9.4 9.4

168 Dyalog APL/W Version 11 Release Notes

Edit Object:)ED nms

) ED invokes the Dyalog APL editor and opens an Edit window for each of the objects
specified in nms.

If a name specifies a new symbol it is taken to be a function/operator. However, if a
name is localised in a suspended function/operator but is otherwise undefined, it is
assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an
appropriate symbol as follows :

v function/operator

-~ | simple character vector

€ vector of character vectors

- character matrix

® Namespace script

o Class script

o Interface

The first object named becomes the top window on the stack. See User Guide for
details.) ED ignores names which specify GUI objects.

Examples
)ED MYFUNCTION

JED VF00 -MAT eVECVEC

Chapter 4: Language Enhancements 169

Function Declaration Statements

Certain statements that are used to identify the characteristics of a function in some
way. These statements are not executable statements and may appear anywhere in the

body of the function.

Access Statement

t:Access

:Access <Private|Public><Instance|Shared>

:Access <WebMethod»>

The :Access statement is used to specify characteristics for functions that represent
Methods in classes (see chapter 3). It is also applicable to Classes and Properties.

Element

Description

Private|Public

Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The default
is Private.

Instance|Shared

Specifies whether the method runs in the Class or
Instance. The default is Tnstance.

WebMet hod

Specifies that the method is exported as a web method.
This applies only to a Class that implements a Web
Service.

Overridable

Applies only to an Instance Method and specifies that the
Method may be overridden by a Method in a higher
Class. See below.

Override

Applies only to an Instance Method and specifies that the
Method overrides the corresponding Overridable Method
defined in the Base Class. See below

170

Dyalog APL/W Version 11 Release Notes

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable isreplaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding Base
Class Methods.

WebMethod

Note that : Access WebMet hod is equivalent to:

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

Attribute Statement :Attribute

:Attribute <Name> [ConstructorArgs]

The : Attribute statement is used to attach .Net Attributes to a Method (or Class).

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .Net attribute

ConstructorArgs | Optional arguments for the Attribute constructor

Examples

tAttribute ObsoleteAttribute
tAttribute ObsoleteAttribute 'Don''t use' 1

Chapter 4: Language Enhancements 171

Implements Statement :Implements

:Implements Constructor <[:Base exprl»>
:Implements Destructor

:Implements Method <InterfacelName.MethodName>
:Implements Trigger <nameil><,name2,names3,...

The :Implements statement identifies the function to be one of the following special
types.

Element Description

Constructor | Specifies that the function is a class constructor.

:Base expr Specifies that the Base Constructor be called with the result of
the expression ex pr as its argument.

Destructor Specifies that the method is a Class Destructor.

Method Specifies that the function implements the Method

Met hodName whose syntax is specified by Interface
InterfacelName.

Trigger Identifies the function as a Trigger Function which is activated
by changes to variables name1, name 2, etc. (see Triggers).

Signature Statement :Signature

:Signature <rslttype<«><name><argltype argilname>,...

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify a

different result type.
Element Description
rslttype Specifies the data type for the result of the
method
name Specifies the name of the exported method.
argntype Specifies the data type of the nth parameter
argnname Specifies the name of the nth parameter

172

Dyalog APL/W Version 11 Release Notes

Argument and result data types are identified by the names of .Net Types which are
defined in the .Net Assemblies specified by QUSING or by a : USING statement.

Examples

In the following examples, it is assumed that the .Net Search Path (defined by : Us ing
or JUSING includes 'System'.

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature Stringll«Format Object Array

The next statement specifes that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters.
The first parameter is of type System.Double and is named Dimension. The
second is of type System.Object and is named Argl. The third is of type
System.Object and is named Arg2.

:Signature Object<Catenate Double Dimension,...
...0bject Argil, Object Arg2

The next statement specifes that the function is exported as a method named
IndexGen whose result is an array of type System. Int32 and which takes 2
parameters. The first parameter is of type System. Int32 and is named N. The
second is of type System.Int32 and is named Origin.

:Signature Int32[J]<«IndexGen Int32 N, Int32 Origin

The next block of ststements specifies that the function is exported as a method named
Mix. The method has 4 different signatures; i.e. it may be called with 4 different
parameter/result combinations.

:Signature Int32[,]«Mix Double Dimension,
...Int32[] Vec1, Int32([] Vec2
:Signature Int32[,]«Mix Double Dimension,...
Int32[] Veci, Int32[] Vec2, Int32 Vec3
:Signature Doublel,]«Mix Double Dimension,
Double[] Veci, Doublel[] Vec2
:Signature Doublel,]«Mix Double Dimension, ...
Double[] Vec1i, Double[] Vec2, Doublel[] Vec

Chapter 4: Language Enhancements 173

Triggers

Triggers provide the ability to have a function called automatically whenever a variable
or a Field is assigned. Triggers are actioned by all forms of assignment (<), but only by
assignment.

Triggers are designed to allow a class to perform some action when a field is modified
— without having to turn the field into a property and use the property setter function to
achieve this. Avoiding the use of a property allows the full use of the APL language to
manipulate data in a field, without having to copy field data in and out of the class
through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger from
a variable is a little tricky at present.
The function that is called when a variable or Field changes is referred to as the Trigger
Function. The name of a variable or Field which has an associated Trigger Function is
termed a Trigger.
A function is declared as aTrigger function by including the statement:

:Implements Trigger Namel,Name2,Name3,

where Name 1, Name2 etc are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name Name of the Trigger whose change in value has
caused the Trigger Function to be invoked.

NewValue The newly assigned value of the Trigger

0ldvValue The previous value of the Trigger. If the Trigger was

not previously defined, a reference to this Field causes
aVALUE ERROR.

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The precise
timing is not guaranteed and may not be consistent because internal workspace
management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

174 Dyalog APL/W Version 11 Release Notes

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be
re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this
will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix the
Trigger function in the function in which the Trigger is localised; for example:

v TRIG arg
[1] :Implements Trigger 4
[2]
v TEST; A
[1] OFX OOR'TRIG!
(2] A<10
[3]
Example
The following function displays information when the value of variables 4 or B
changes.
v TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 o VALUE ERROR
(4] arg.Name'was 'arg.0ldValue
[5] :Else
(6] arg.Name' was (undefined]'
(7] :EndTrap
v

Note that on the very first assignment to 4, when the variable was previously
undefined, arg.0ldValueisa VALUE ERROR.

Chapter 4: Language Enhancements 175
A<10
A 1Is now 10
A was [undefined]
A+<10
A 1Is now 20
A was 10
A«'Hello World'
A 1Is now Hello World
A was 20
Al1]<«c2 3p16
A 1Is now 1 2 3 ello World
4L 5 6
A was Hello World
B<¢"4
B 1s now 3 2 1 ello World
6 5 L4
B was [undefined]
A<[NEW MyClass
A is now #.[Instance of MyClass]
A was 1 2 3 ello World
4L 5 6
'"F'OWC'Form!
A<F
A Is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing 4 to a Form
using (W C does not invoke TRIG.

'A'OWC'FORM'

oked

a Note that Trigger Function 1Is not Inv

However, the connection (between 4 and TRIG) remains and the Trigger Function will
be invoked if and when the Trigger is re-assigned.

A
A

A<99
1S now 99
was #.A

176 Dyalog APL/W Version 11 Release Notes

177

Symbolic Index

tACCESS il See access statement
:C1aSS i See class statement
:EndClass ..o, See endclass statement
:EndNamespace See endnamespace
:EndProperty ... See endproperty statement
tField e, See field statement
:Include See include statement
:Implements ... See implements statement
:Interface ... See interface statement
:Namespace See namespace statement
:Property ..o See property statement
OBASE oo, See base class
OCLASS e See class
ODF it See display form
OFIX oot See fix script
OINSTANCES oveeeeecieeeecieeeeennns See instances
ONC e See name class
ONEW eeeiiiieeiieeeeeeeeeee See new instance
ONL et See name list
OPP e See print precision
OSRC ceeiiiiiieieee e See source
OTHIS cooooieeiiiieeiiceeiieee e See this space
OWX e See window expose
YJCLASSES ovvieecieeeecveeeeeneen See list classes

YED oot See edit object

178 Dyalog APL/W Version 11 Release Notes

Alphabetic Index

name-class........ccoevvvvveeiiiiiiiinnnnnnnnn, 157,158
A NEW INSEANCE ...eevvieirieriieiiieeiie e 159
access statement...........cccceeenneeeenne 58, 101, 169 prqpertles """"""""""""""" 52,62, 101, 149
Access Statement ... 08 SC?lpt .. 33
and boolean function ... 126 thl_s SPACE ...eeenveeeitie ettt 165
using statement..........cceeeeeeeeerecninieeeeeennnnns 96
APLCOTE ...t 26 Classes
ASPNET ..ottt 24 .
assignment brqwsm et 121
. classification of names.............ccceeevvveeennns 146
TE-aSSIZNMENT ...ovvviireeeiriiiiieeeeeeeeiiieeeeenn 14
attribute statementccceeceerieennnnn. 97,170 common key
AULOCOMPIELE ..ovveeeviieeeiiieeeiiee e, 17
autocomplete s
Compatibilitycoeevveveeieiiiieeeciiee e, 1
COMMON KEY....ovvvvieiiiiieeiiiie e 17
component files
B compatibilityccovverevviiieiniiiee e, 1
ComponentFile Class Example...................... 69
base classcocoeiininiiiiinnn 33, 35,95, 135 CONJUNCHION. ...vei e See and
base CONSIIUCTOT.....cuvvevieieicieiieiiiii 45 CONSTIUCLOTS ..ttt 36
Boolean functions DASE 1.ttt 45
and (conjunction)............cceeeevveereereenenen. 126 NTOdUCtioncoeovieieieeeeeeeeeeeee e 37
or (inclusive disjunction)c.ce.v... 127 MONAIC. ...vevieeieviiiieieete e 48
nladic ..oooovvvviiiiiiii 41, 47
C overloading..........ccoceeeveiiiiiniiieeeiiee e, 38
class (system function)c.ccceevvvennnnn. 136 copy .
classes dependant ObjECtSccceeevveiiiiiiiiiiiieeee. 11
base class ..oooveeeeee 33’ 35’ 95’ 135 TEES oo 10
CASHNG..vvveeeeeeeeeeeee e 137 COPY system command.............ccccoveeenvneens 28
class system function..............ccceeeeeneneen. 136
CONStIUCtOrS...vvveeeeeereennnnn. 36, 37, 43, 45, 48 D
defining.......coeovvviieieiiee e 33 default constructor........eeeveeevveeeeeeeeeeennn. 41,43
derived from .Net Type.......cccoovnieininnnin, 35 default propertyccoceevvveereeeereenenn. 68,129
derived from GUI ..o, 36 denormal NUMDbETScovevreviiriieiieriirieieenenins 8
deStIUCTOr ...ovveieiriiericricrecsecreeseee 43,50 AEStIUCEOT ..t 43, 50
display form..........c.cooiiiiii 139 diSJUNCHON. ...cveveeieeeeeeee e See or
CAItING..cvviieeciiie e 34 display formcccoeevvieenciiieiciieceee e 139
external Interfaces.........covveeeveeeeviiuieeenens 158 dyadic primitive functions
fieldS ..o 52,53, 148 AN oo 126
fIX SCIIPt..eveieeeiiiie e 143 greatest common diviSor............ocevveeennnne 127
including Namespaces...........ccceevevveveenane. 77 index function...........cocevveeveeereereneneennnn. 128
INhEritance......occeeeeeeieeciineeeeeeeeeeinee, 33,35 lowest common multiple.............cceeennne 126
INStances...........cooevveveieienennn. 33, 36, 50, 145 OF oottt ereee ettt ettt v e evenas 127
INFOAUCION .. 33 Dylan
list Classescooovveiiiiiiiiiiiiiiis 167 BOD o 12
IMEMDETS. c..evieeiieriiieeiiie et 52

Alphabetic Index 179

E
editing APL objects.....c.ccccovvvreeennennnn. 142, 168
CAILOT c.eevvieeeiiee e 142
endproperty statement...............cceeeernneennn. 101
EXPOrt t0 MEMOTY ..eevveeereiiiiirieeeeeereirireeeenss 118
session file menu.........cceeevvveeveiiieennnenn, 20
EXPOSING PrOPEItICS ..cvvvveeeerrieeeerreeervreeenns 166
external interfacescccoeeveeevviveeencnenenn, 158
F
fields...cooeeiniieieee 52,53, 148
INTHALISING ...vvveeeeieee e, 54
PIIVALE...ovviieiiiiee et eeree e 55
PUDLIC....eviiiiiiiieciee e 53
Sharedcceeeeeeiiieiiiee e 56
TEIZEOT c.vveeeeiiiee e et e et e e e e e eaaeeeeereeas 57
FIX SCIIPL voveeiiieeeiiee e 33,143
FONES 1o 16
G
greatest common diviSOr............ccccvveeeennnee.. 127
I
implements statement............c...ccceuveeeennneen. 171
CONSHIUCLOTeevvieieeeeeeeiiiiieeeeeeeeiiiareeeeens 45
deStrUCtOrvvveieiiiee e 50
method.......ocooviiiciiii e, 75
TIZEOT c.vvveeeeeiireeeeereeeeeireeeeerreeeeereee e e 173
include statementcccoeeveeeeriiieeencnnennn. 77
index
WIth @XES...cviiiiiiiiieiciiie e, 130
index function..........ccceeevveeeveiiieencieee e, 128
INNETIANCE ... 33,35
initialising fieldscccceeeveiiiiiiiiieecieee 54
INSTANCES .. 36, 50, 145, 155
empty arrays ofcccceevveiveeiiinieeenns 42,43
INEErfacesuvvvevveeeenneineiininnnnns 75,76, 95, 157
Interoperabilityccocevvveerciiiiinciieeeeiieee 1
isolation Mode..........ccevvveieirciiiieiiiie e 19
Ttem propertyoooeeevvvveeeeeeiiiiiiieee e 22
K
keyboard........ceeeeeciiiiiiiiie e 16
keyed propertyccveeeeveeeeecieeeennieeeenns 71,74

L
LiSt ClaSSES ...vvvveeeriieeciiiee et 167
list names in a class.........cccceeeeveveeeencninnnn. 160
logical conjunction............cccceeevvereennnns See and
logical disjunctionccceeeeeevveeeennnenn. See or
logical operations............ See Boolean functions
lowest common multiple............ccceeeeneenenne 126
M
MAXWS PATATMNELET ...vvvveeeeerriiiiiieeeeeeerniiiieeeeeens 5
MEhOAS ... 52,58

INSTANICE .o, 58, 60

PIIVALC...eeiiiiieiiiiiee et e e e 58

PUDLIC...oiiiiiiiiieiiie e 58

Sharedeeveeeeeieiieeieiiees 58,59

superseding in the base class..................... 61
N
name classifications.............ccccveeeeenveeeeennen. 146
NAME LISt .oeeiiiiiieiiiiie e, 160
NAMEIIST ..eeeeiiiiieieiiee e 38
NAMESPACE SCIIPL ..evvrreeerrieeeirieeeeireeeeeieeeens 89
namespace statement............ccceeeeeerennnnes 89, 94
namespaces

including in classes.........c.ccceeeuvereeenireennns 77

thiS SPACE.....vveeieriieeeiiiee e, 165
Net Framework

configuring forc.cceevvveeivciieeiiiieees 24
NEW INSLANCE.vvvvveeereeeeeeererreeeeeeeeeeeennns 36, 159
niladic constructor...........cccuvvvvvevnnnne. 41, 43, 47
NUMDET CONVEISIONvvvveeeeeriereeeeireeeeireeeenenns 8
numbered

PTOPEILY ceiiiiiiieeeeeeeiiieeee e e e e e e e e 68
numbered Propertyccceeeeveveeeercvereercnveeenns 67
0
or boolean function............cccceeevevereernnennn. 127
overridable............cccccvvviiiii, 58, 61, 98
OVEITIAC.......oovvviiiiiiiiiiiiiiieee 61,98
P
PassSingletonAsScalarccceeeeveeeennne 32
Penguin Class example...........cccoveeeeeveeeennns 76
POWET OPETALOTvvvvreeeeeeiiiiieeeeeeeriireeeeenss 132

primitive operators

180 Alphabetic Index

POWET viiieeeeeeiiiiiieeeeeeeeiiireeeee e e e eiianees 132
Print PreCisSionecvvereeeveeeeeereeeeeiveeeesvveeens 8
PrOPErtiesccccvvereeenreeeererveeenns 52,62, 149, 150

default..........coo 68, 101

INSTANCEccoevviiiiiiiiiiiiiiiiiiiiee, 63, 64, 101

keyedooooeiiiiiiiiiieee 62,71, 74,101

numbered 62, 66, 67, 68, 101, 103, 104

PIIVAL ...eiiieiiiee et 101

properetyget function...........c.ccceeevveeeennnenn. 66

propertyarguments class............... 64, 66, 102

propertyget function 103, 104

propertyget Function.............c..cccvveeeneeen. 129

propertyset function............c....cu..... 66, 129

propertyshape function 66, 105

PUDLIC ...viiiiiiiiceiee e, 101

referring to GUI Objectscocevveeennnen. 15

shared......cooooeeeeeeiieiiiiiiiiieeee, 65,101

simple............... 62, 63, 64, 65, 101, 103, 104
property statement..........eeeeeevvvieeeeeeeininnnns 101
propertyarguments class 64, 66, 102
propertyget function 66, 103, 104
propertyset function...........ccceeevveeeernveeeenneen. 66
propertyshape functioncccceeeevveeeennneen. 66
prototypes

deferred generation...........cccceeeevveeeennnennnn. 12
Q
quad INdeXing........ccceeevevvereercrireeerreeee e 130

R

0] 01 21 (o) U PPRRRN 16
TE-ASSIZNIMENTvvveeeeiiieeeeiiieeeeireeeeveee e 14
S

squad INAEXINGcc.eeeeverveeeerrieeeeireeeeeneen. 128
System error COAeScccevvereerrreeerrreeeeeenenn. 27
system error dialogccceeeeevvereennnennn. 26, 28
SYSteM EXCEPLIONS.....uvvererrrreerrreeeeireeeeeeneens 27
T

thiS SPACE.....uvvieeeiiieeeeiieee et 165
trigger fieldS......coovviiiviiiiiiciiee s 57
triggerarguments class..........cccoeeeveeeennneenn. 173
TEIZEOIS vveeeeniieeeeeiieeeeeireeeerereeeeeereeeeseraeeeens 173
U

Using Classesccovveeeecvveeeesreeeennnns 107, 111
USING StAteMENt......eeevevieeeririeeeeiieeeeiveee e 96
'}

Version 10.1.5..cooiiiiiiiiiiee e 2
w

WINAOW EXPOSE..vvreerrrireeirieeerireeeeeneen 22,166
workspace integrity check.............cccveeennneen. 26
WOIKSPACE SIZE ..vvvveeveiiiieeeiiiieeeciieeeereee e 5

workspaceloaded event............ccceeevvieeennnenn. 31

