

 The tool of thought for expert programming

Dyalog for Windows

Release Notes

Dyalog Limited

Grove House
Lutyens Close

Chineham Court
Basingstoke

Hampshire, RG24 8AG
United Kingdom

tel: +44 (0)1256 338461
fax: +44 (0)1256 316559

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright 1982-2006

mailto:support@dyalog.com
http://www.dyalog.com

Copyright 1982-2006 by Dyalog Limited.

All rights reserved.

Version 11.0.1

First Edition September 2006

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited, Grove House, Lutyens Close, Chineham
Court, Basingstoke, Hampshire, RG24 8AG, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:

Intel, 386 and 486 are registered trademarks of Intel Corporation.
IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.
POSTSCRIPT is a registered trademark of Adobe Systems, Inc.
SQAPL is copyright of Insight Systems ApS.
The Dyalog APL True Type font is the copyright of Adrian Smith.
TrueType is a registered trademark of Apple Computer, Inc.
UNIX is a trademark of X/Open Ltd.
Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

 Contents iii

Contents
Contents... iii

C H A P T E R 1 General ... 1
Interoperability and Compatibility ... 1
Improved Workspace Management.. 5
Number Conversion .. 8
Changes to)COPY.. 10
Deferred Prototype Generation .. 12
Matching Refs... 13
Changing Name-Class on Assignment ... 14
Properties that refer to GUI Objects ... 15
New Fonts and Keyboard Files .. 16
New AutoComplete Feature .. 17
Isolation Mode .. 19
Export to Memory... 20
Close AppDomain... 21
External Object (COM and .Net) Behaviour... 22
Configuring for different Versions of the .Net Framework ... 24
System Errors.. 26
WorkspaceLoaded Event (525).. 31
Miscellaneous ... 32

C H A P T E R 2 Object Oriented Programing .. 33
Introducing Classes ... 33
Constructors.. 37
Destructors.. 50
Class Members.. 52
Fields.. 53
Methods.. 58
Properties.. 62
Interfaces .. 75
Including Namespaces... 77
Nested Classes .. 80
Namespace Scripts .. 89
Class Declaration Statements... 94
:Field Statement .. 99
:Property Section... 101

 Contents iv

C H A P T E R 3 Using Classes with the Dyalog GUI and .Net107
Using the Dyalog GUI ... 107
Writing Classes based on the Dyalog GUI.. 111
Writing Classes based on .Net Types ... 118
Example of a Class based on a .Net Type ... 119
Browsing Classes .. 121

C H A P T E R 4 Language Enhancements..125
New and Improved Primitive Functions & Operators.. 125

And, Lowest Common Multiple: 126
Or, Greatest Common Divisor: 127
Index: 128
Index with Axes: 130
Power Operator: 132

New and Improved System Functions & Commands .. 134
Base Class: 135
Class: 136
Display Form: 139
Edit Object: 142
Fix Script: 143
Instances: 145
Name Classification: 146
New Instance: 159
Name List: 160
Source: 164
This Space: 165
Window Expose: 166
List Classes: 167
Edit Object: 168

Function Declaration Statements.. 169
Access Statement............................... .. 169
Attribute Statement 170
Implements Statement......................... 171
Signature Statement............................ 171

Triggers... 173

Symbolic Index ...177

Alphabetic Index...178

 1

C H A P T E R 1

General

Interoperability and Compatibility
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to text
editors). This format differs between machine architectures and among versions of
Dyalog. For example a file component written by a PC will almost certainly have an
internal format that is different from one written by a UNIX machine. Similarly, a
workspace saved from Dyalog Version 11 will differ internally from one saved by a
previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able to
interoperate by sharing workspaces and component files. However, this is not always
possible. For example, if a new internal data structure is introduced in a particular
version of Dyalog APL, previous versions could not be expected to make sense of it. In
this case the load (or copy) from the older version would fail with the message:

Similarly, large (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction.

The second item in the right argument of determines the addressing type of
the file.

For the moment, if the second item is missing, the file type defaults to 32-bit-addressing
(max 4GB file size), even on a 64-bit system for maximum inter-operability. We will
change the default to 64-bit in Version 11.1, by which time we believe the bulk of our
users will be running versions which can use 64-bit files (Version 11.0 or later)

Dyalog APL Version 11 adds to the interoperability problem by supplying versions for
both 32-bit and 64-bit machine architectures.

 Dyalog APL/W Version 11 Release Notes 2

Interoperability is summed up in the following tables. Table rows show the version that
is attempting to access the file or workspace and columns show the version that saved it:

Version 10.1.5
Version 10.1.5 is an update to V10.1 issued specifically to enhance 10.1/11.0
compatibility. Version 10.1.5 is essentially version 10.1.2 with the addition of some
Version 11.0 file system code. If Version 10.1 applications are moved to 10.1.5, they
will be able to share files with code which has been moved to 64-bit Version 11.0. For
example, this would allow a computational server to be moved to 64-bit Version 11.0
and provide data to an application which was still running Version 10.1.

The row and column titles show the Dyalog version 9.0, 10.0, etc; (32) and (64) indicate
a version running on a 32-bit or 64-bit machine architecture, respectively.

Implementation
In general all writes are made in the format that is native to the writer. Readers do the
work of any necessary translation. The exception is when writing from a 64 bit version
to a 32 bit file. This has been allowed provided the machine architecture is the same. 32
bit files are the same architecture for the entire file. 64 bit files can have each
component written differently.

Workspace interoperability
can load/copy from …

 9.0 10.0 10.1 10.1.5 11.0(32) 11.0(64)
9.0 Yes - - - - -
10.0 Yes Yes - - - -
10.1 Yes Yes Yes Yes - -
10.1.5 Yes Yes Yes Yes - -
11.0 (32) Yes Yes Yes Yes Yes Yes
11.0 (64) - - Yes Yes Yes Yes

 Chapter 1 General 3

Component files (32-bit) and External variables
can access …

 9.0 10.0 10.1 10.1.5 11.0(32) 11.0(64)

9.0
Yes
~t

Yes
~f~n~t

Yes
~f~n~t

Yes
~f~n~t

Yes
~f~n~t

Yes
~f~n~t

10.0
Yes
~t

Yes
~t

Yes
~t

Yes
~t

Yes
~n~t

Yes
~n~t

10.1
Yes
~t

Yes
~t

Yes
~t

Yes
~t

Yes
~n~t

Yes
~n~t

10.1.5
Yes
~w

Yes
~w

Yes
~w

Yes
~w

Yes
~n~w

Yes
~n~w

11.0 (32)
Yes
~w

Yes
~w

Yes
~w

Yes
~w

Yes
~w

Yes
~w

11.0 (64)
Yes
~w

Yes
~w

Yes
~w

Yes
~w

Yes
~w

Yes
~w

Notes
~f: Cannot read s of functions.
~n: Cannot read s of namespaces.
~t: Cannot tie files created on machines with different byte ordering (e.g. PC/UNIX).
~w: Can read from but cannot write to files created on machines with different byte
ordering (attempting to write generates).

Component files (64-bit)
can access …

 9.0 10.0 10.1 10.1.5 11.0(32) 11.0(64)
9.0 - - - - - -
10.0 - - - - - -
10.1 - - Yes Yes ~b Yes ~n~b -
10.1.5 - - Yes Yes Yes ~n Yes ~n
11.0 (32) - - Yes Yes Yes Yes
11.0 (64) - - Yes Yes Yes Yes

Notes
~b: Cannot read a component with the wrong byte-ordering.
~n: Cannot read s of namespaces.

 Dyalog APL/W Version 11 Release Notes 4

Sockets (Type)
can decode from …

 9.0 10.0 10.1 10.1.5 11.0(32) 11.0(64)
9.0 Yes Yes ~fn Yes ~f~n Yes ~f~n Yes ~f~n -
10.0 Yes Yes Yes Yes Yes ~n -
10.1 Yes Yes Yes Yes Yes ~n -
10.1.5 Yes Yes Yes Yes Yes ~n -
11.0 (32) Yes Yes Yes Yes Yes Yes
11.0 (64) Yes Yes Yes Yes Yes Yes

Notes
~f: Cannot read s of functions.
~n: Cannot read s of namespaces.

Auxiliary Processes
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.
In other words, the AP must share the same word-width and byte-ordering as its
interpreter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and
saved.

 Chapter 1 General 5

Improved Workspace Management
Introduction
From version 11.0, Dyalog can reduce its process size by returning unused memory to
the operating system.

This happens when one of the following occurs:

Notice that could be called under program control to reduce the process size after
returning from a memory-intensive section of an application.

Workspace Size and Compaction

The maximum amount of memory allocated to a Dyalog APL workspace is defined by
the maxws parameter.

Upon and , APL allocates an amount of memory corresponding to the
size of the workspace being loaded (which is zero for a clear ws) plus the workspace
delta.

The workspace delta is 1/16th of maxws, except if there is less than 1/16th of maxws in
use, delta is 1/64th of maxws. This may also be expressed as follows:

where is the value of the maxws parameter and is the currently allocated
amount of workspace. If maxws is 16384KB, the workspace delta is either 256KB or
1024 KB, and when you start with a the workspace occupies 256KB.

When you erase objects or release symbols, areas of memory become free. APL
manages these free areas, and tries to reuse them for new objects. If an operation
requires a contiguous amount of workspace larger than any of the available free areas,
APL reorganises the workspace and amalgamates all the free areas into one contiguous
block as follows:

 Dyalog APL/W Version 11 Release Notes 6

1. Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-referenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple numeric
array that happens to contain only values 0 or 1, is demoted or squeezed to have a
 type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process is
known as compaction.

4. In addition to any extra memory required to satisfy the original request, an
additional amount of memory, equal to the workspace delta, is allocated. This will
always cause the process size to increase (up to the maxws limit) but means that an
application will typically achieve its working process size with at most 4+15
memory reorganisations.

5. However, if after compaction, the amount of used workspace is less than 1/16 of
the Maximum workspace size (MAXWS), the amount reserved for working
memory is reduced to 1/64th MAXWS. This means that workspaces that are
operating within 1/16th of MAXWS will be more frugal with memory

 Chapter 1 General 7

Note that if you try to create an object which is larger than free space, APL reports
.

The following system function and commands force a workspace reorganisation as
described above :

However, in contrast to the above, any spare workspace above the workspace delta is
returned to the Operating System. On a Windows system, you can see the process
size changing by using Task Manager.

The system function may therefore be used judiciously (workspace reorganisation
takes time) to reduce the process size after a particularly memory-hungry operation.

Note that in Dyalog APL, the SYMBOL TABLE is entirely dynamic and grows and
shrinks in size automatically. There is no condition.

 Dyalog APL/W Version 11 Release Notes 8

Number Conversion
The conversion of numbers between internal form and display form has been
significantly improved for Version 11.0.

Numbers (such as 3.14), input in the session or used as constants in source code, are
converted to a binary (IEEE) format for storage in the workspace. If the internal number
is subsequently displayed, the reverse conversion takes place as the number is
formatted.

The conversion of numbers between internal form and display form has been
significantly improved and in Version 11.0:

a) When is set to its maximum value of 17, distinct numbers have distinct
display forms.

b) Such forms use the smallest number of digits possible.

A consequence of this is that if is set to its maximum value of 17, floating-point
numbers may be converted between binary and character representation without loss of
precision. In particular, if is 17 and is 0 (to ensure exact comparison), for any
floating-point number the expression is true (except for denormal numbers).

Denormal Numbers
Numbers, very close to zero, in the range 2.2250738585072009E¯308 to
4.9406564584124654E¯324 are called denormal numbers.

Such numbers can occur as the result of calculations and are displayed correctly.
However, denormals cannot be specified as literals and are converted to zero on input.

Numbers below the lower end of this range (4.94E¯324) are indistinguishable from zero
in IEEE double floating point format.

Note that the converse of (a) is not necessarily true: distinct input forms may convert to
the same internal binary number. This is clearly the case if we supply more digits than
the 64-bit internal format is capable of representing. In particular, a decimal number
such as (or), which has an infinite binary representation must necessarily be
represented internally, only approximately. This can lead to a slightly surprising (though
correct) display, if is set to 17. For example, we might wonder why only 16 digits
of accuracy are displayed in the following:

 Chapter 1 General 9

We see the reason if we display the internal format of together with its display form
and the display forms of its immediate IEEE neighbours:

 0x3FD5555555555554 -> 0.33333333333333326
 0x3FD5555555555555 -> 0.3333333333333333
 0x3FD5555555555556 -> 0.33333333333333337

Rule (b) constrains us to format using the smallest number of digits that would convert
back to internal number 0x3FD5555555555555 (which is just less than one third).

The Problem
To avoid any loss of precision, literal numbers in source code are displayed with
maximum print precision, , by the function editor and .

Version 11 input conversion is very slightly more accurate than in previous versions.
For example, in Version 10.1, a number input as 0.6 would have been converted to
internal binary IEEE format as:

 0.6 -> 0x3FE3333333333334 // V10

where in V11, it is converted to the marginally more accurate:

 0.6 -> 0x3FE3333333333333 // V11

In V11, using , IEEE number 0x3FE3333333333333 displays (correctly) as
, while its neighbour 0x3FE3333333333334 displays (correctly) as
.

This means that source code from versions prior to Version 11 may occasionally
show strange-looking numbers such as , when viewed in
Version 11.

Note that this DOES NOT CHANGE the accuracy of any calculations: refixing the
function with the longer () number in Version 11 will
continue to convert to the same internal number (0x3FE3333333333334) as before.
However, changing the number in the source code to would convert to a different
number (0x3FE3333333333333), which might be very slightly closer to what you
had in mind.

 Dyalog APL/W Version 11 Release Notes 10

Changes to)COPY
Namespaces Containing Refs
Version 11 makes a small change to the way that namespaces containing refs are copied
using or .

We can show the change most easily by using a simple example.

Suppose a saved workspace contains two namespaces and , and
 contains a ref to , which contains variable .

.target-----. .--> .sibling----.
sibref--+--'	var		
'-----------' '-----------'

Old behaviour
Prior to Version 11, 's outward-pointing ref would be inverted on copy.

.target----------.
| |
| .sibling---. |
	var	
'----------'		
'----------------'

New behaviour

.target-----. .--> .(sibling)--.
sibref--+--'	var		
'-----------' '-----------'

 Chapter 1 General 11

In this case, the original parent/child relationships are preserved. Note however, that the
name is not fixed in the space from which the copy occurred.

More generally, an incoming space, whose ancestry does not include the target of the
copy (e.g. in the above example), is fixed as an anonymous child of the
current space.

Copying Dependant Objects
 now issues a warning message when it copies dependant objects into the active
workspace.

If you an object without including the names of any objects upon which it
depends in the list of names to be copied, such as:

a) an Instance of a Class but not the Class itself
b) a Class but not a Class upon which it depends
c) an array or a namespace that contains a ref to another namespace, but not the

namespace to which it refers

the dependant object(s) will also be copied but will be unnamed and hidden. In such
as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named
 and an Instance (of) named ,

The existence of a hidden copy can be confusing, especially if it is a hidden copy of an
object which had a name which is in use in the current workspace. In the above
example, if there is a class called in the workspace into which is
copied, the copied instance may appear to be an instance of the visible , but
it will actually be an instance of the hidden - which may have very different
(or perhaps worse: very slightly different) characteristics to the named version.

If you copy a Class without copying its Base Class, the Class can be used (it will use the
invisible copy of the Base Class), but if you edit the Class, you will either be unable to
save it because the editor cannot find the Base Class, or - if there is a visible Class of
that name in the workspace - it will be used as the Base Class. In the latter case, the
invisible copy which was brought in by will now disappear, since there are no
longer any references to it - and if these two Base Classes were different, the behaviour
of the derived Class will change (and any changes made to the invisible Base Class
since it was copied will be lost).

 Dyalog APL/W Version 11 Release Notes 12

Deferred Prototype Generation
Unlike earlier versions of Dyalog APL, Version 11.0 does not generate a prototype
when an empty array is created. The prototype is instead created when an operation on
the empty array needs a prototype to generate a result.

This means that Version 11.0 allows the creation of an empty array from an array of
namespace references. In previous Versions of Dyalog APL, this gives a

The deferred requirement for prototypes is especially useful when making selections
from lists of namespaces. For example, if is a vector of namespaces representing
a CD database, an expression such as:

.. will always work in version 11.0, while it would have given a in
earlier versions in the unlikely event that there had been no CD’s by Bob Dylan in the
collection. However, the following expressions still gives a :

… because both expressions require inspection of a prototype in order to compute the
result. So it may still be necessary to check the length of the result before using the
selection.

Note that, if the was an array of instances of a Class, it would be possible to
specify a prototypical CD entry and get the latter expression to return the “expected
result” . See Empty Arrays of Instances: How?

 Chapter 1 General 13

Matching Refs
In version 11.0, match () and not match () return 0 and 1 respectively if used to
compare two refs which do not point to the same object.

Earlier Versions returned 1 and 0 respectively if the refs were identical, but
 if they were different.

Note:
At some point in the future, it is likely that it will be possible for a class definition to
contain definitions of comparison functions, and that the existence of such functions
would replace pointer matching. This is already the case for instances of .NET Classes,
for example:

These two instances match, even though they are NOT the same object, because the
DateTime class defines a comparison function for instances of this class. Therefore, it is
NOT safe to write code which assumes that, if two refs match, they refer to the same
object (unless you are the author of the classes being compared).

 Dyalog APL/W Version 11 Release Notes 14

Changing Name-Class on Assignment
Version 11 allows you to overwrite a ref (name class 9) with a variable (name class 2)
and vice-versa.

For example, if we have:

and

We can now do either:

or

In particular, if is a namespace reference, we can say:

then

The table of permitted re-assignments is as follow.

 Ref Variable Function Operator

Ref Yes Yes

Variable Yes Yes

Function Yes Yes

Operator Yes Yes

 Chapter 1 General 15

Properties that refer to GUI Objects
In the Dyalog GUI, a number of Properties are used to specify and/or report references
between GUI objects. For example, the FontObj property of a Label object specifies the
Font object used to display its text. In previous versions of Dyalog APL, such objects
are referenced by name. In Version 11, all the Properties that are used to reference
another object accept/report refs as well as names.

The list of such Properties includes the following:

BtnPix CellFonts ColSortImages CursorObj

DockChildren FontObj Fstyle HintObj

IconObj ImageListObj Input MDIMenu

Picture Popup RowTreeImages SplitObj1

SplitObj2 TipObj TabObj ToolboxBitmap

Note that when you query the value of any of these Properties, APL will report
whatever you specified (name or ref) when you set the Property. However, if you have
not previously set the value, it will be reported as an empty character vector.

There are however some Properties, whose values are automatically updated by the
system, for which this approach would not be appropriate. In these cases, an additional
Property is provided with the same name followed by the suffix Ref. For example,
MDIActive continues to report the name of the active SubForm whereas the new
property MDIActiveRef provides a ref to it.

The list of such Properties includes the following:

MDIAtive MDIActiveRef

PageActive PageActiveRef

 Dyalog APL/W Version 11 Release Notes 16

New Fonts and Keyboard Files
Version 11.0 includes a new set of APL fonts and an additional set of keyboard files.

The new fonts include the symbol (Power operator) and symbol which replaces left
tack.

The Dyalog APL TrueType fonts (Dyalog Std TT and Dyalog Alt TT) have improved
appearance characteristics, especially as larger sizes.

The APL385 Unicode font is also included with Version 11. This font is recommended
for use with Notepad and other text editors when viewing and editing APLScript files.

The separate unified and traditional mode keyboards provided in previous versions of
Dyalog APL have been combined into a single table. For each supported country, the
new table is named cc.din, where cc is the country code. These tables are provided
in additional to the ones supplied with previous versions of Dyalog APL.

The keyboards start in unified mode and can be switched to traditional mode (Shift+r
for) by clicking the Uni/Apl field in the status bar or by keying * on the Numeric-
Keypad.

The new tables support the entry of the and symbols by pressing Ctrl+Shift+p and
Ctrl+Shift+l in either mode. However, the new tables do not support the entry of APL
underscored characters

During installation, the appropriate new table will be presented as the default choice.

Note that the standard keyboard tables provided with earlier versions of Dyalog APL
are provided in the \old sub-directory.

 Chapter 1 General 17

New AutoComplete Feature

Version 11.0 includes an enhancement to AutoComplete that is designed to cater for the
use of common prefixes in names.

It is not unusual for developers to adopt a convention of prefixing a group of APL
names with a common string of characters. To improve the usefulness of the
AutoComplete feature in these circumstances, a new Common key has been provided.

If you are typing and the AutoComplete window is displayed, pressing the Common key
will auto-complete the common prefix. This is defined to be the longest string of leading
characters in the currently selected name that is shared by at least one other name in the
list.

 Dyalog APL/W Version 11 Release Notes 18

For example, if the workspace contains variables , , , ,
, , and the system is set to AutoComplete on 1 character, typing
will cause the AutoComplete window to display all 7 names.

If is the currently selected name, clicking the Common key will fill in the rest of
the common prefix, namely , and reduce the list to , and .

If is the currently selected name, clicking the Common key will fill in the
characters , and reduce the list to , and .

Whereas if the currently selected name is , clicking the Common key has no
effect.

 Chapter 1 General 19

Isolation Mode
There is a new option on the Create Bound File dialog box, when exporting a Class as a
Microsoft .Net Assembly (dll), labelled Isolation Mode.

For each application which uses a class written in Dyalog APL, at least one copy of
either dyalog110.dll or dyalog110rt.dll will be started in order to host and
execute the appropriate APL code. Each of these engines will have an APL workspace
associated with it, and this workspace will contain classes and instances of these classes.
The number of engines (and associated workspaces) which are started will depend on
the Isolation Mode which was selected when the APL assemblies used by the
application were generated. Isolation modes are:

• Each host process has a single workspace

• Each appdomain has its own workspace

• Each assembly has its own workspace

The last two Isolation Modes are new in version 11.0. Previously, each application
always used a single engine to run all classes and instances used by that application.

Note that, in this context, Microsoft Internet Information Services (IIS) is a single
application, even though it may be hosting a large number of different web pages. Each
ASP.Net application will be running in a separate AppDomain, a .NET object which is
an isolated subdivision of the application. Other .NET applications may also be divided
into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any IIS
web page will be hosted in the same workspace and share a single copy of the
interpreter. The second option will start a new Dyalog engine for each ASP.Net
application. The final option will start a new Dyalog engine for each assembly
containing APL classes.

 Dyalog APL/W Version 11 Release Notes 20

Export to Memory
There is a new option on the Session File menu labelled Export to Memory.

If you create an APL Class based upon a .Net Type, you must export it as a .Net
Assembly before you can use it.

This option allows you to create an in-memory .Net Assembly that you can use to test
the Class, without having to repeatedly go through the entire exercise of saving it as a
.Net Assembly on disk (as a DLL file) as you develop the code.

Furthermore, using this option, it is not necessary to Close the AppDomain (see Close
AppDomain) each time you replace the Assembly. However, be aware that each time
you export (to memory), additional memory is used and it may be appropriate to free it
(using Close AppDomain) periodically.

Note that to use an in-memory Assembly, it is not necessary to set .

You only need to re-export to memory if you make a change to your class which
changes the public interface of the class. So changes to functions do not require re-
exporting, but if you add a new method or change a signature, you must re-export.

Note that, APL will only allow you to use a Class based upon a .Net Type via a .Net
Assembly, either an in-memory Assembly or a DLL file on disk. You may not use a
Class directly.

 Chapter 1 General 21

Close AppDomain
There is a new option on the Session File menu labelled Close AppDomain.

When APL uses a Class which is in a .Net Assembly (normally a DLL file), that
Assembly is loaded into a .Net memory area known as the Application Domain, or the
AppDomain for short. When an assembly is in use by any application, including the
current APL workspace, you cannot overwrite the DLL file on disk, so you cannot make
changes to classes which need to be exported in order to be used.

Previously, during the development of a Class based upon a .Net Type () it
was necessary to , re-load the workspace or terminate Dyalog APL each time
you needed to update the DLL. Note that APL automatically closes the AppDomain
when a workspace is loaded, or on .

In order to speed up the development cycle, Version 11 provides a menu item which
closes the AppDomain so that you can then overwrite the DLL you were using with a
new version.

Note that any instances of .Net classes become null pointers when you do this:

 Dyalog APL/W Version 11 Release Notes 22

External Object (COM and .Net) Behaviour
Version 11.0 improves the behaviour of COM and .Net objects, but for backwards
compatibility it is possible to select old or new behaviour using .

Old behaviour:
a) Character vectors supplied as arguments to external functions, which are defined as

String parameters, are automatically enclosed for you. Similarly, string results are
automatically disclosed.

b) Properties that take parameters, such as the Property in a Collection, are

treated as methods.

c) APL provides lists of the Properties, Methods and Events provided by a GUI object

by exposing additional properties named PropList, MethodList and EventList.

New behaviour
a) Character vectors supplied as arguments to external functions, which are defined as

String parameters, must be enclosed. Strings are returned as enclosed character
vectors.

b) Properties that take indices, such as the Property in a Collection, are

honoured as Numbered or Keyed Properties and may be accessed by indexing.

c) PropList, MethodList and EventList are not exposed. Instead, the information is

provided by , and (but alphabetically sorted).

The actual behaviour of a COM or .Net object is now determined by its value of . If
 is 0 or 1, the old behaviour will apply. If is 3, the new behaviour will apply.

The behaviour of COM and .Net objects in existing applications will remain the same
(because will be 0 or 1) but you may obtain the benefits of the new behaviour by
setting to 3 at the appropriate level in your application. Then, everything below
that (in the namespace hierarchy) will adopt the new behaviour.

Note that regardless of the value of , Version 11 will honour the Default Property of
an external object thereby permitting the direct use of indexing on the object itself.

For example, if is an instance of the Excel.Application COM class, the following
expression to obtain the contents of the first Sheet in the first Workbook will succeed,
whatever the value of .

 Chapter 1 General 23

Note that it is the value of which the object acquired when it was created, rather
than the current value of , which decide the behaviour.

Like other system variables, is inherited from the environment when a new
namespace, class or instance is created. Classes inherit the value of when a class is
edited or fixed, unless the class script explicitly sets a value for . In the case of
.NET classes, is inherited when the class or namespace is loaded from a .NET
assembly. For built-in (GUI) classes, each new instance inherits when it is created.

Examples

Note that it is the value of in the object, and not in the calling environment, that
decides the behaviour:

Note that, if we expunged the System.DateTime class instead of setting to 1, and
repeated the expression, a new DateTime class would be created but it would inherit
 from its parent (System), where still has the value 3. Using .NET classes in an
application where varies within a single APL namespace can therefore lead to
unexpected results. It is recommended that applications only use more than one value
for as a temporary measure during a conversion project.

 Dyalog APL/W Version 11 Release Notes 24

Configuring for different Versions of the .Net
Framework

Dyalog APL Version 11.0 is compatible with versions 1.1 and 2.0 of the Microsoft.Net
Framework.

On a machine that has multiple versions of the .Net framework installed, Dyalog APL
will use the most recent version by default. If you have both versions and need to use
version 1.1 for any reason, there are two configuration files which are distributed with
version 11 but need to renamed in order to take effect:

dyalog.exe.config.1.1 (in the main Dyalog folder, and)
bin\dyalogc.exe.config.1.1 (which controls the script compiler)

If you rename these files and remove the trailing “.1.1”, so that the final file extension
becomes “config”, they will take effect, and cause the development environment and
the script compiler (respectively) to use version 1.1 of the framework. The contents of
these files are as follows:

<?xml version ="1.0"?>
<configuration>
 <startup>
 <supportedRuntime version="v1.1.4322" />
 </startup>
</configuration>

Note that ASP.NET may be configured to assume that version 1.1 of the framework
should be used. This can be configured differently for each “virtual folder”, like the
dyalog.net virtual folder which contains tutorials and examples distributed with Dyalog
APL version 11.0. You can verify the ASP.NET setting by starting the IIS Control
Panel, selecting Properties for a virtual folder, and navigating to the ASP.NET tab (see
the picture below).

 Chapter 1 General 25

Note that it is not currently possibly for a single version of Dyalog APL to be used to
compile and run web pages using different versions of the framework simultaneously. If
you have web pages which need to continue to run under version 1.1, but wish to
develop new ones under 2.0, you must either host the pages on different machines, or
use version 10.1 of Dyalog APL to host the old web pages.

In theory, you could use version 1.1 for the script compiler in order to run web pages
under 1.1 and the development environment under 2.0 in order to experiment with non-
IIS functionality, but this is not recommended.

We hope to relax this restriction in a future version of Dyalog APL.

For more information, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSide-
by-SideExecution.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconSide

 Dyalog APL/W Version 11 Release Notes 26

System Errors
Introduction
Dyalog APL will display a System Error Dialog and (normally) terminate in one of two
circumstances:

1. As a result of the failure of a workspace integrity check
2. As a result of a System Exception

Workspace Integrity
When you your workspace, Dyalog APL first performs a workspace integrity
check. If it detects any discrepancy or violation in the internal structure of your
workspace, APL does not overwrite your existing workspace on disk. Instead, it
displays the System Error dialog box and saves the workspace, together with diagnostic
information, in an aplcore file before terminating.

A System Error code is displayed in the dialog box and should be reported to Dyalog
for diagnosis.

Note that the internal error that caused the discrepancy could have occurred at any time
prior to the execution of and it may not be possible for Dyalog to identify the
cause from this aplcore file.

If APL is started in debug mode with the –Dc, -Dw or –DW flags, the Workspace
Integrity check is performed more frequently, and it is more likely that the resulting
aplcore file will contain information that will allow the problem to be identified and
corrected.

 Chapter 1 General 27

System Exceptions
Non-specific System Errors are the result of Operating System exceptions that can
occur due to a fault in Dyalog APL itself, an error in a Windows or other DLL, or even
as a result of a hardware fault. The following system exceptions are separately
identified.

Code Description Suggested Action

900

A Paging Fault has occurred As the most likely cause is a
temporary network fault,
recommended course of action is
to restart your program.

990 &
991

An exception has occurred in
dyalog11.dll or
dyalog11rt.dll

995

An exception has occurred in a
DLL function called via

Carefully check your
statement and the arguments that
you have passed to the

DLL function

996
An exception has occurred in a
DLL function called via a threaded
 call

As above

997 An exception has occurred while
processing an incoming OLE call

999
An exception has been caused by
Dyalog APL or by the Operating
System

 Dyalog APL/W Version 11 Release Notes 28

Recovering Data from aplcore files
Objects may often (but not always) be recovered from aplcore using . Note that
because (by default) the aplcore file has no extension, it is necessary to explicitly add a
“dot”, or APL will attempt to find the non-existent file aplcore.DWS, i.e.

Reporting Errors to Dyalog
If APL crashes and saves an aplcore file, please email the following information to
support@dyalog.com:

• a brief description of the circumstances surrounding the error

• your Dyalog APL Version number and Build ID (see Help/About)

• the aplcore file itself

If the problem is reproducible, i.e. can be easily repeated, please also send the
appropriate description, workspace, and other files required to do so.

System Error Dialog Box
The System Error Dialog illustrated below was produced by deliberately inducing a
system exception in the Windows DLL function memcpy(). The functions used were:

mailto:support@dyalog.com

 Chapter 1 General 29

Options

Item Description

Generate complete
image core

Dumps a complete core image with the User Mode Process
Dumper (a Microsoft tool) - see below.

Create Trappable
Error

If you check this box (only enabled on System Error codes
995 and 996), APL will not terminate but will instead
generate an error 91 ()
when you press Dismiss.

Create an aplcore file If this box is checked, an aplcore file will be created.

Pass exception on to
operating system

If this box is checked, the exception will be passed on to
your current debugging tool (e.g. Visual Studio).

Paste to clipboard Copies the contents of the APL stack trace window to the
Clipboard.

 Dyalog APL/W Version 11 Release Notes 30

Generate complete image core
The Generate complete image core option attempts to execute
[SYSDIR]\userdump.exe, where [SYSDIR] is the windows system directory
(typically c:\windows\system32, and userdump.exe is the User Mode Process
Dumper, a Microsoft tool that can be downloaded from the following url (which you
may copy from Winhelp and paste into a browser):

http://www.microsoft.com/downloads/details.aspx?FamilyID=e23cd741-d222-48df-
9cd8-28796f414256&DisplayLang=en

The process creates a file called dyalog.core in the current directory. This file contains
much more debug information than a normal aplcore (and is much larger than an
aplcore) and can be sent to Dyalog Limited (zip it first please). Alternatively the file can
be loaded into Visual Studio .Net to do your own debugging.

Debugging your own DLLs
If you are using Visual Studio on Microsoft Windows XP (or similar), the following
procedure should be used to debug your own DLLs when an appropriate Dyalog APL
System Error occurs.

Ensure that the Pass Exception box is checked, then click on Dismiss to close the
System Error dialog box.

The system exception dialog box appears. Click on Debug to start the process in the
Visual Studio debugger.

After debugging, the system exception dialog box appears again. Click on Don't send to
terminate Microsoft Windows XP's exception handling.

ErrorOnExternalException Parameter
This parameter allows you to prevent APL from displaying the System Error dialog box
(and terminating) when an exception caused by an external DLL occurs. The following
example illustrates what happens when the functions above are run, but with
ErrorOnExternalException set to 1.

http://www.microsoft.com/downloads/details.aspx?FamilyID=e23cd741-d222-48df

 Chapter 1 General 31

WorkspaceLoaded Event (525)
Applies to Session ()

If enabled, this event is reported when a workspace is loaded or on a . You
may not nullify or modify the event with a 0-returning callback, nor may you generate
the event using , or call it as a method.

The event message reported as the result of , or supplied as the right argument to
your callback function, is a 2-element vector as follows :

 [1] Object name : character vector (
 [2] Event name or code: or 525

This event is fired immediately after a workspace has been loaded and before the
execution of .

The callback function you attach should be defined in .

 Dyalog APL/W Version 11 Release Notes 32

Miscellaneous
Miscellaneous changes introduced in Version 11.0 are as follows:

Keyboard Viewer
The Version 11 Session includes the Kibitzer keyboard viewer from Kai Jäger.
See Tools-> Keyboard Viewer ...

PassSingletonAsScalar
In Version 11.0, the default value of PassSingletonAsScalar is 0. In previous versions of
Dyalog APL it was 1.

 33

C H A P T E R 2

Object Oriented Programing

Introducing Classes
A Class is a blueprint from which one or more Instances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together as
Members) which are defined within the body of the class script or are inherited from
other Classes. This version of Dyalog APL does not support Events although it is
intended that these will be supported in a future release. However, Classes that are
derived from .Net types may generate events using .

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new
versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class
can have Shared members which can be used without first creating an instance

Defining Classes
A Class is defined by a script that may be entered and changed using the editor. A class
script may also be constructed from a vector of character vectors, and fixed using
.

A class script begins with a statement and ends with a
statement.

 Dyalog APL/W Version 11 Release Notes 34

For example, using the editor:

[an edit window opens containing the following skeleton Class script …]

[the user edits and fixes the Class script]

Editing Classes
Between the and statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may not
add or alter functions by editing them independently and you may not add variables by
assignment or remove objects with .

When you re-fix a Class Script using the Editor or with , the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in its
entirety.

Note:
Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so forth
that are created by actions external to the class.

For example, if is not a public member of the class , then the following
expression will insert a variable into the namespace which surrounds the class:

The namespace is analogous to the namespace associated with a GUI object and will be
re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

 Chapter 2 Object Oriented Programing 35

Inheritance
If you want a Class to derive from another Class, you simply add the name of that
Class to the statement using colon+space as a separator.

The following example specifies that derives from .

Note that is referred to as the Base Class of .

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the Class
hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If the
global name of the base class is expunged, the derived class will still have the base
class reference, and the base class will therefore be kept alive in the workspace. The
derived class will be fully functional, but attempts to edit it will fail when it attempts to
locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is refixed, will the new base
class be detected.

If you edit, refix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or refixing the
derived class(es) after the base class has been substituted.

Classes that derive from .Net Types
You may define a Class that derives from any of the .Net Types by specifying the name
of the .Net Type and including a statement that provides a path to the .Net
Assembly in which the .Net Type is located.

Example

 Dyalog APL/W Version 11 Release Notes 36

Classes that derive from the Dyalog GUI
You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named that derives from a object, the Class
specification would be:

The Base Constructor for such a Class is the system function.

For further details see Writing Classes Based on the Dyalog GUI.

Instances
A Class is generally used as a blueprint or model from which one or more Instances of
the Class are constructed. Note however that a class can have Shared members which
can be used directly without first creating an instance.

You create an instance of a Class using the system function which is monadic.

The 1-or 2-item argument to contains a reference to the Class and, optionally,
arguments for its Constructor function.

When executes, it first creates an empty instance namespace and tags it with an
internal pointer to its Class.

When executes, it creates a regular APL namespace to contain the Instance, and
within that it creates an Instance space, which is populated with any Instance Fields
defined by the class (with default values if specified), and pointers to the Instance
Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to . If was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

The result of is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

 Chapter 2 Object Oriented Programing 37

Constructors
A Constructor is a special function defined in the Class script that is to be run when an
Instance of the Class is created by . Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a
 statement, because like all Class members, Constructors default to
being Private. Private Constructors currently have no use or purpose, but It is intended
that they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only one)
may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Constructor
argument. See Constructor Overloading for details.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor
function may be invoked is by . See Base Constructors for further details.

When is executed with a 2-item argument, the appropriate monadic Constructor
is called with the second item of the argument.

The niladic (default) Constructor is called when is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a fill item for the
Class.

Note that first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Example
The Class defines a Constructor function that initialises the
Instance by storing its name (supplied as the 2nd item of the argument to) in a
Public Field called .

 Dyalog APL/W Version 11 Release Notes 38

Constructor Overloading
NameList header syntax is used to define different versions of a Constructor each with
a different number of parameters, referred to as its signature. The Clover Class
illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is called.
If no suitable constructor is found, a is reported.

There may be one and only one constructor with a particular signature.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Constructor
function may be invoked is by . See Base Constructors for further details.

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument
 1-item vector

 2-item vector

 3-item vector

 No argument

 Any array accepted

 Chapter 2 Object Oriented Programing 39

Clover Class Example

 Dyalog APL/W Version 11 Release Notes 40

In the following examples, the function (see Clover Class listing for details)
displays:

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the Constructor.Note that, although the
argument to is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable .

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose , or respectively.

Creating an Instance with any other Constructor argument causes the system to choose
.

Note that a scalar argument will call and not .

and finally, creating an Instance without a Constructor argument causes the system to
choose .

 Chapter 2 Object Oriented Programing 41

Niladic (Default) Constructors
A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when is
invoked without arguments and when APL needs a fill item.

The niladic Constructor (in this example, the function) is invoked when
 is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor , except that the value of the
 Field is set to .

The niladic Constructor is also used when APL needs to make a fill item of the Class.
For example, in the expression , APL has to create two fill items of
 (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:

 Dyalog APL/W Version 11 Release Notes 42

The (temporarily) ceates a 10-element array comprising the single entity
padded with 9 fill-elements of Class . To obtain the 9 fill-elements, APL calls the
niladic Constructor 9 times, one for each separate prototypical Instance that it is
required to make.

Empty Arrays of Instances: Why ?
In APL it is natural to use arrays of Instances. For example, consider the following
example.

We might create an array of Instances of the Cheese Class as follows:

Suppose we want a range of medium-strength cheese for our cheese board.

But look what happens when we try to select really strong cheese:

 Chapter 2 Object Oriented Programing 43

Note that this message is not the result of the expression, but was explicitly displayed
by the function. The clue to this behaviour is the shape of ; it is
empty!

When a reference is made to an empty array of Instances (strictly speaking, a reference
that requires a prototype), APL creates a new Instance by calling the niladic (default)
Constructor, uses the new Instance to satisfy the reference, and then discards it. Hence,
in this example, the reference:

caused APL to run the niladic Constructor , which displayed:

Notice that the behaviour of empty arrays of Instances is modelled VERY closely after
the behaviour of empty arrays in general. In particular, the Class designer is given the
task of deciding what the type of the members of the prototype are.

Empty Arrays of Instances: How?
To cater for the need to handle empty arrays of Instances as easily as non-empty arrays,
a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs.

2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:

a. if it is a reference is to a Field, the value of the Field is obtained
b. if it is a reference is to a Property, the PropertyGet function is run
c. if it is a reference is to a Method, the method is executed
d. if it is an assignment, the assignment is performed or the PropertySet

function is run
4. if it is a reference, the result of step 3 is used to generate an empty result array

with a suitable prototype by the application of the function to it
5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

 Dyalog APL/W Version 11 Release Notes 44

Example

First, we can create an empty array of Instances of Bird using .

A reference to causes APL to create a new Instance and invoke the
niladic Constructor . This function sets to
and calls which displays output to the Session.

APL then retrieves the value of (), applies the function
 to it and returns this as the result of the expression.

A reference to causes APL to create a new Instance and invoke the
niladic Constructor . This function sets to
and calls which displays output to the Session.

 Chapter 2 Object Oriented Programing 45

APL then involes function which displays and
returns this as the result of the function.

APL then applies the function to it and returns this as the result of the
expression.

Base Constructors
Constructors in a Class hierarchy, are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to
participate in the initialisation of an Instance.

Every Constructor function contains a statement
which may appear anywhere in the function body. The statement may optionally be
followed by the control word and an arbitrary expression.

The statement:

calls a monadic Constructor in the Base Class. The choice of Constructor depends upon
the rank and shape of the result of (see Constructor Overloading for details).

Whereas, the statement:

or

calls the niladic Constructor in the Base Class.

 Dyalog APL/W Version 11 Release Notes 46

Note that during the instantiation of an Instance, these calls potentially takes place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a .

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
with a . Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way a
Constructor function may be invoked is by . The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when a
new Instance is instantiated. If Constructor functions were allowed to call one another,
there would be several calls on the Base Constructor. Similarly, if a Constructor could
be called directly it would potentially duplicate the Bse Constructor call.

 Chapter 2 Object Oriented Programing 47

Niladic Example
In the following example, is derived from which is
derived from . They all share the Field (inherited from). Each of the
3 Classes has its own niladic Constructor called .

Explanation

 creates the new instance and runs the niladic Constructor
. As soon as the line:

is encountered, calls the niladic constructor in the Base Class

 starts to execute and as soon as the line:

is encountered, calls the niladic constructor in the Base Class

 Dyalog APL/W Version 11 Release Notes 48

When the line:

is encountered, cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the State Indicator unwinds …

 executes
 executes
 execute

Monadic Example
In the following example, is derived from which is
derived from . They all share the Field (inherited from) but only
a has a Field . Each of the 3 Classes has its own Constructor
called .

 Chapter 2 Object Oriented Programing 49

Explanation

 creates the new instance and runs the Constructor .
The header splits the argument into two items and . As soon as
the line:

is encountered, calls the Base Class constructor , passing it the
result of the expression to the right, which in this case is simply the value in .

 starts to execute and as soon as the line:

is encountered, calls its Base Class constructor , passing it the result
of the expression to the right, which in this case is the character vector
catenated with the value in .

 assigns its argument to the Public Field .

At this point, the State Indicator would be:

 then returns to which returns to .

Finally, is executed, which establishes Field and
the Display Format () for the instance.

 Dyalog APL/W Version 11 Release Notes 50

Destructors
A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with an
Instance.

An Instance of a Class is destroyed when:

• The Instance is expunged using or .
• A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

• The Instance is re-assigned (see below)
• The result of is not assigned (the instance gets created then immediately

destroyed).
• APL creates (and then destroys) a new Instance as a result of a reference to a

member of an empty Instance. The destructor is called after APL has obtained
the appropriate value from the instance and no longer needs it.

• The constructor function fails. Note that the Instance is actually created before
the constructor is run (inside it), and if the constructor fails, the fledgling
Instance is discarded. Note too that this means a destructor may need to deal
with a partially constructed instance, so the code may need to check that
resources were actually acquired, before releasing them.

• On the execution of , , or .

Note that an Instance of a Class only disappears when the last reference to it
disappears. For example, the sequence:

will not cause the Instance of to disappear because it is still referenced by
.

A Destructor is identified by the statement which
must appear immediately after the function header in the Class script.

 Chapter 2 Object Oriented Programing 51

Note that reassignment to causes the Instance referenced by to be destroyed
and the Destructor invoked:

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure:

containing the following Destructors:

Destroying an Instance of will run the Destructors in
, and and in that order.

 Dyalog APL/W Version 11 Release Notes 52

Class Members
A Class may contain Methods, Fields and Properties (commonly referred to together as
Members) which are defined within the body of the Class script or are inherited from
other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. D-fns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to set
the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all sorts
of operations. In particular, the value of a Property is not stored in the Property and
may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members
are common to all Instances and Shared Members may be referenced directly on the
Class itself.

 Chapter 2 Object Oriented Programing 53

Fields
A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However, Fields
differ from variables in that they possess characteristics that control their accessibility.

A Field may be declared anywhere in a Class script by a statement. This
specifies:

• the name of the Field
• whether the Field is Public or Private
• whether the Field is Instance or Shared
• whether or not the Field is ReadOnly
• optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields for details.

Public Fields
A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class has a Field which is defined to be Public and
Instance (by default).

The Name field is initialised by the Class constructor.

The Name field may also be modified directly:

 Dyalog APL/W Version 11 Release Notes 54

Initialising Fields
A Field may be assigned an initial value. This can be specified by an arbitrary
expression that is executed when the Class is fixed by the Editor or by .

Field will be initialised to in every instance of the Class.

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: Shared Fields

 Chapter 2 Object Oriented Programing 55

Private Fields
A Private Field may only be referenced by code running inside the Class or an Instance
of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 69) has a Private Instance Field named that is
used to store the file tie number in each Instance of the Class.

As the field is declared to be Private, it is not accessible from outside an Instance of the
Class, but is only visible to code running inside.

 Dyalog APL/W Version 11 Release Notes 56

Shared Fields
If a Field is declared to be Shared, it has the same value for every Instance of the Class.
Moreover, the Field may be accessed from the Class itself; an Instance is not required.

The following example establishes a Shared Field called that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise a
Field.

A Shared Field is not only accessible from an instance …

… but also, directly from the Class itself.

Notice that in this case it is necessary to insert a statement (or the equivalent
assignment to) in order to specify the .Net search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

 Chapter 2 Object Oriented Programing 57

Trigger Fields
A Fields may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change the
Display Form. This can be achieved by making the Field a Trigger as illustrated by the
following example.

Notice that the Trigger function is invoked both by assignments made within the Class
(as in the assignment in) and those made from outside the Instance.

 Dyalog APL/W Version 11 Release Notes 58

Methods
Methods are implemented as regular defined functions, but with some special attributes
that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a , followed by a valid APL defined function header.
The method definition is terminated by a closing .

The behaviour of a Method is defined by an control statement.

Public or Private
Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside the
Class namespace or inside an Instance namespace. The name of a Private method is not
visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods
Instance Methods may be declared with .

A Method declared as being Overridable is replaced in situ (i.e.within its own Class) by
a Method of the same name that is defined in a higher Class which itself is declared
with the Override keyword. See Superseding Base Class Methods.

 Chapter 2 Object Oriented Programing 59

Shared Methods
A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Class has a method that does not require any information about the
current Instance, so may be declared as Shared.

Note that may be executed directly from the Class and does not in
fact require an Instance.

 Dyalog APL/W Version 11 Release Notes 60

Instance Methods
An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class has a method defined to be Public and Instance.
Where refers to , it obtains the value of in the current Instance.

Note too that supersedes the inherited .

 Chapter 2 Object Oriented Programing 61

Superseding Base Class Methods
Normally, a Method defined in a higher Class supersedes the Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words in
the statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base Class
method in the Base Class, by providing a method which is marked Override. The
typical use of this is to replace code in the Base Class which handles an event, with a
method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in
the base class:

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

If the derived class had a function which was not marked Override, then function in the
derived class which called would call the function as defined in the
derived class, but if a function in the base class called , it would still
see the base class version of this function. With Override specified, the new function
supersedes the function as seen by code in the base class. Note that different derived
classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

 Dyalog APL/W Version 11 Release Notes 62

Properties
A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined to
allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices. The Numbered Property
is designed to allow APL to perform selections and structural operations on the
Property.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Properties.

If Instance has a Simple Property and a Numbered Property ,
the expressions

both cause APL to call the PropertyGet function to retrieve the entire value of .
The second statement subsequently uses indexing to extract just the second element of
the value.

Whereas, the expression:

causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the
expression:

 Chapter 2 Object Oriented Programing 63

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a section in a Class
Script.

Within the body of a Property Section there may be:

• one or more statements
• a single PropertyGet function.
• a single PropertySet function
• a single PropertyShape function

Simple Instance Properties
A Simple Instance Property is one whose value is accessed (by APL) in its entirety and
re-assigned (by APL) in its entirety. The following examples are taken from the
ComponentFile Class (see page 69).

The Simple Property returns the number of components on a file.

Because there is no function defined, the Property is read-only and attempting to
change it causes .

 Dyalog APL/W Version 11 Release Notes 64

The Property has both and functions which are used, in this simple
example, to get and set the component file access matrix.

Note that the function must be monadic. Its argument, supplied by APL, will be
an Instance of . This is an internal Class whose
field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been assigned.
The function may validate the value reject or accept it (as in this example), or perform
whatever processing is appropriate.

 Chapter 2 Object Oriented Programing 65

Simple Shared Properties
The ComponentFile Class (see page 69) specifies a Simple Shared Property named
 which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also possible
to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a
whole, and which is not specific to any a particular Instance.

Note that (invoked by the function) does not report the names of
tied files.

Note that a Shared Property may be accessed from the Class itself. It is not necessary to
create an Instance first.

 Dyalog APL/W Version 11 Release Notes 66

Numbered Properties
A Numbered Property behaves like an array which is only ever partially accessed and
set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property
except that a scalar result implies a vector.

APL then calls the PropertyGet or PropertySet function once for each element of the
index set, supplying an argument of type PropertyArguments.

Note that when a numbered property is accessed, APL is responsible for validating the
indices and ensuring that the value assigned or retrieved is a scalar. When PropertySet
is called, NewValue will always be a scalar, and APL will validate that you return a
scalar as the result of a PropertyGet.

If the expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the PropertyGet or
PropertySet function successively for every element in the Property. Future versions of
APL may provide ways to specify that numbered accessor functions work one more
than one element at a time.

Note that APL generates a if an index contains the wrong number of
elements or an if an index is out of bounds.

Example
The ComponentFile Class (see page 69) specifies a Numbered Property named
 which represents the contents of a specified component on the file.

 Chapter 2 Object Oriented Programing 67

Referencing a Numbered Property in its entirety causes APL to call the function
successively for every element.

Attempting to access a Numbered Property with inappropriate indices generates an
error:

 Dyalog APL/W Version 11 Release Notes 68

The Default Property
A single Numbered Property may be identified as the Default Property for the Class. If
a Class has a Default Property, indexing with the primitive function and
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class (see page 69) can be
extended by adding the control word to the statement for the
 Property.

Indexing may now be applied directly to the Instance . In essence, is simply
shorthand for and is shorthand for

Note however that this feature applies only to indexing.

 Chapter 2 Object Oriented Programing 69

Component File Class Example

 Dyalog APL/W Version 11 Release Notes 70

Component File Class Example (continued)

 Chapter 2 Object Oriented Programing 71

Keyed Properties
A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not restricted
to integers but may be arbitrary arrays.

To implement a Keyed Property, only a and/or a function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assignment)
and the array returned by the get function (for an indexed reference). If the rank or
shape of these arrays fails to conform to the rank or shape of the indices, APL will
issue a or .

Note too that indices may not be elided. If is a Keyed Property of Instance ,
the following expressions would all generate .

When APL calls a monadic or a function, it supplies an argument of type
PropertyArguments.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named . The following expressions show how it might be used.

 Dyalog APL/W Version 11 Release Notes 72

Sparse2 Class Example

 Chapter 2 Object Oriented Programing 73

Internally, maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the function receives a list of keys (indices)
in and values in . The function updates the values of
existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the function receives a list of keys (indices)
in . The function uses these keys to retrieve the corresponding values,
inserting 0s for non-existent keys.

Note that in the expression:

the structure of is:

 Dyalog APL/W Version 11 Release Notes 74

Example
A second example of a Keyed Property is provided by the Class which is
based upon the ComponentFile Class (see page 69) used previously.

 Chapter 2 Object Oriented Programing 75

Interfaces
An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents a
protocol that an application must follow in order to manipulate a Class in a particular
way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own individual
version of Compare. An application can then be written that sorts Instances of any
Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

To implement a Method, a function defined in the Class must include a
 statement that maps it to the corresponding Method defined
in the Interface:

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The function
name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name,
however, need not be the same as that described in the Interface.

 Dyalog APL/W Version 11 Release Notes 76

Example
The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

 Chapter 2 Object Oriented Programing 77

In this case, the Class derives from but additionally supports the
 and Interfaces, thereby inheriting members
from both.

Including Namespaces
A Class may import methods from one or more plain Namespaces. This allows several
Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace , the Class Script must include a statement:

When the Class is fixed by the editor or by all the defined functions and
operators in Namespace are included as methods in the Class. The functions and
operators which are brought in as methods from the namespace are treated exactly
as if the source of each function/operator had been included in the class script at the
point of the statement. For example, if a function contains
or statements, these will be taken into account. Note that such declarations
have no effect on a function/operator which is in an ordinary namespace.

D-fns and D-ops in are also included in the Class but as Private members, because
D-fns and D-ops may not contain or statements. Variables
and Sub-namespaces in are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in
are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in , the Class
member takes precedence and supersedes the function in .

Conversely, functions in will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

 Dyalog APL/W Version 11 Release Notes 78

Class supersedes
Included Namespace, supersedes

Base Class

Any number of Namespaces may be included in a Class and the statements
may occur anywhere in the Class script. However, for the sake of readability, it is
recommended that you have statements at the top, given that any
definitions in the script will supersede included functions and operators.

Example
In this example, Class inherits from and includes functions from
the plain Namespaces and .

Namespace contains 2 functions, both declared as Public methods.

Namespace contain a single function, also declared as a Public method.

 Chapter 2 Object Oriented Programing 79

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the method with . We can
hide with a Private method in that does nothing. For
example:

or we can supersede it with a different Public method, as follows:

 Dyalog APL/W Version 11 Release Notes 80

Nested Classes
It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either or . This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
.

A Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Nested Class is not and may only be used
by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.Net and is one of the samples
distributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are .

GolfCourse A Class that represents a Golf Course, having Fields and
.

Slot A Class that represents a tee-time or match, having Fields
and . Up to 4 players may play together in a match.

Booking A Class that represents a reservation for a particular tee-time at a
particular golf course. This has Fields , ,
and . The value of is an Instance of a Slot
Class.

StartingSheet A Class that represents a day's starting-sheet at a particular golf
course. It has Fields , , , , .
 is an array of Instances of Slot Class.

 Chapter 2 Object Oriented Programing 81

GolfService Example Class

 Dyalog APL/W Version 11 Release Notes 82

 Chapter 2 Object Oriented Programing 83

 Dyalog APL/W Version 11 Release Notes 84

 Chapter 2 Object Oriented Programing 85

 Dyalog APL/W Version 11 Release Notes 86

 Chapter 2 Object Oriented Programing 87

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method if it doesn't already exist.

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

All of the dates and times employ instances of the .Net type System.DateTime, and the
following statements just set up some temporary variables for convenience later.

The MakeBooking method takes between 4 and 7 parameters viz.

the code for the golf course at which the reservation is required
the date and time of the reservation
a flag to indicate whether or not the nearest available time will do
and a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead (4-
player restriction).

 Dyalog APL/W Version 11 Release Notes 88

However, Pete and Tiger are joined at 7:00 by Dave and Al.

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00 …

… so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal Class
StartingSheet for the given course and day.

 Chapter 2 Object Oriented Programing 89

Namespace Scripts
A Namespace Script is a script that begins with a statement and ends
with a statement. When a Namespace Script is fixed, it establishes
an entire namespace that may contain other namespaces, functions, variables and
classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

 Dyalog APL/W Version 11 Release Notes 90

Note that the names of Classes () and () are not visible from
their “uncle” ().

Notice that Classes in a Namepsace Script are fixed before other objects (hence the
assignments to and are evaluated after Classes and are fixed), although the
order in which Classes themselves are defined is still important if they reference one
another during initialisation.

Warning: If you introduce new objects of any type (functions, variables, or classes)
into a namespace defined by a script by any other means than editing the script, then
these objects will be lost the next time the script is edited and fixed. Also, if you
modify a variable which is defined in a script, the script will not be updated.

 Chapter 2 Object Oriented Programing 91

Namespace Script Example
The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named and .

 contains a (private) Field named , which is simply a vector of
instances of . These are 2-element vectors containing a .NET DateTime
object and a description.

The Field is initialised to an empty vector of instances which
causes the invocation of the default constructor when
is fixed. See Empty Arrays of Instances for further explanation.

The Field is referenced through the Property, which is defined as the
Default Property. This allows individual entries to be referenced and changed using
indexing on a Instance.

Note that is defined in the script first (before) because it is
referenced by the initialisation of the Field

 Dyalog APL/W Version 11 Release Notes 92

 Chapter 2 Object Oriented Programing 93

Create a new instance of .

Add a new entry "meeting with John at 09:00 on April 30th"

Add another diary entry "Dentist at 10:00 on April 30th".

One of the benefits of the Namespace Script is that Classes defined within it (which are
typically related) may be used independently, so we can create a stand-alone instance
of ; "Doctor at 11:00"…

… and then use it to replace the second Diary entry with indexing:

and just to confirm it is there …

What am I doing on the 30th ?

Remove the 11:00 appointment …

and the complete Diary is …

 Dyalog APL/W Version 11 Release Notes 94

Class Declaration Statements
This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Function Declaration Statements.

:Interface Statement

An Interface is defined by a Script containing skeleton declarations of Properties and/or
Methods. The script must begin with a and end with a
.

An Interface may not contain Fields.

There is no need for the Properties and Methods defined in an Interface to contain
 Statements as these will be overridden by the declarations within
the Classes that implement the Interface.

:Namespace Statement

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a statement and end with a
 statement.

Sub-namespaces, which may be nested, are defined by pairs of and
 statements within the Namespace script.

Classes are defined by pairs of and statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that refer
to one another where the use of nested classes is inappropriate.

 Chapter 2 Object Oriented Programing 95

:Class Statement

A class script begins with a statement and ends with a
statement. The elements that comprise the statement are as follows:

Element Description

 Optionally, specifies the name of the Class,
which must conform to the rules governing APL
names.

 Optionally specifies the name of a Class from
which this Class is derived and whose members
this Class inherits.

 The names of one or more Interfaces which this
Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
 statements. For further details, see Including Namespaces in Classes

Examples:
The following statements define a Class named that derives from (is based
upon) a Class named and which supports two Interfaces named
 and .

The following statements define a Class named that derives from (is based
upon) a Class named and includes methods defined in two separate
Namespaces named and .

 Dyalog APL/W Version 11 Release Notes 96

:Using Statement

This statement specifies a .NET namespace that is to be searched to resolve unqualified
names of .NET types referenced by expressions in the Class.

Element Description
 Specifies a .NET namespace.

 Specifies the Assembly in which NameSpace is located. If the
Assembly is defined in the global assembly cache, you need only
specify its name. If not, you must specify a full or relative pathname.

If the Microsoft .Net Framework is installed, the System namespace in mscorlib.dll is
automatically loaded when Dyalog APL starts. To access this namespace, it is not
necessary to specify the name of the Assembly.

When the class is fixed, is inherited from the surrounding space. Each
 statement appends an element to , with the exception of
with no argument:

If you omit , this is equivalent to clearing , which means that
no .NET namespaces will be searched (unless you follow this statement with additional
 statements, each of which will append to).

To set , to a single empty character vector, which only allows references to
fully qualified names of classes in mscorlib.dll, you must write:

 (note the presence of the comma)
 or

(i.e. specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

 Chapter 2 Object Oriented Programing 97

:Attribute Statement

The :Attribute statement is used to attach .Net Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

 The name of a .Net attribute

 Optional arguments for the Attribute constructor

Example
The following Class has and
 attributes attached to the Class as a whole, and
 attributes attached to Methods and within it.

When this Class is exported as a .Net Class, the attributes are saved in its metadata. For
example, Visual Studio will warn developers if they make use of a member which has
the ObsoleteAttribute.

 Dyalog APL/W Version 11 Release Notes 98

:Access Statement

The :Access statement is used to specify characteristics for Classes, Properties and
Methods.

Element Description

 Specifies whether or not the (nested) Class,
Property or Method is accessible from
outside the Class or an Instance of the Class.
The default is .

 For a Field, specifies if there is a separate
value of the Field in each Instance of the
Class, or if there is only a single value that is
shared between all Instances.
For a Property or Method, specifies whether
the code associated with the Property or
Method runs in the Class or Instance..

 Applies only to a Method and specifies that
the method is exported as a web method.
This applies only to a Class that implements
a Web Service.

 Applies only to an Instance Method and
specifies that the Method may be
overridden by a Method in a higher
Class. See below.

 Applies only to an Instance Method and
specifies that the Method overrides the
corresponding Overridable Method
defined in the Base Class. See below.

Overridable/Override
Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being is replaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the keyword. For further information, see Superseding Base
Class Methods.

 Chapter 2 Object Oriented Programing 99

Nested Classes
The :Access statement is also used to control the visibility of one Class that is defined
within another (a nested Class). A Nested Class may be either or .
Note that the :Access Statement must precede the definition of any Class contents..

A Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Nested Class is not and may only be used
by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod
Note that is equivalent to:

:Field Statement

A statement is a single statement whose elements are as follows:

Element Description

 Specifies whether or not the Field is accessible
from outside the Class or an Instance of the
Class. The default is .

 Specifies if there is a separate value of the Field
in each Instance of the Class, or if there is only a
single value that is shared between all Instances.

 If specified, this keyword prevents the value in
the Field from being changed after initialisation.

 Specifies the name of the Field (mandatory).

 Specifies an initial value for the Field.

 Dyalog APL/W Version 11 Release Notes 100

Examples:
The following statement defines a Field called . It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so may
be accessed (set or retrieved) from outside an Instance.

The following statement defines a Field called .

 is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and may
not be altered after initialisation. It's initial value is calculated by an expression that
obtains the short month names that are appropriate for the current locale using the .Net
Type DateTimeFormatInfo.

Note that Fields are initialised when a Class script is fixed by the editor or by . If
the evaluation of causes an error (for example, a), an
appropriate message will be displayed in the Status Window and will fail with a
. Note that a ReadOnly Field may only be assigned a value by its
 statement.

In the second example above, the expression will only succeed if is set to the
appropriate path, in this case System.Globalization.

 Chapter 2 Object Oriented Programing 101

:Property Section
A Property is defined by a section in a Class
Script. The syntax of the :Property Statement, and its optional statement is
as follows:

Element Description

 Specifies the name of the Property by which
it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour
may be specified by a comma-separated list
of names.

 Specifies the type of Property (see below).
The default is .

 Specifies that this Property acts as the
default property for the Class when indexing
is applied directly to an Instance of the
Class.

 Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
.

 Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Numbered and Keyed Properties are designed to allow APL to perform selections and
structural operations on the Property.

 Dyalog APL/W Version 11 Release Notes 102

Within the body of a Property Section there may be:

• one or more statements
• a single PropertyGet function.
• a single PropertySet function
• a single PropertyShape function

The three functions are identified by case-independent names G, S and .

When a Class is fixed by the Editor or by , APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape
functions within them. If anything is wrong, an error is generated and the Class is not
fixed.

PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class .

 has 2-3 read-only Fields which are as follows:

 The name of the property. This is useful when one function is
handling several properties.

 Array containing the new value for the Property or for selected
element(s) of the property as specified by .

 An array that identifies the element(s) of the Property that are
to be referenced or assigned.

 Chapter 2 Object Oriented Programing 103

:PropertyGet Function Syntax

The name of the PropertyGet function must be , but is case-independent. For
example, , , and are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

For a Simple Property, the result may be any array. For a Numbered Property, the
result must be scalar. For a Keyed Property, must conform to the rank and shape
specified by .

If monadic, is an instance of the internal class PropertyArguments

In all cases, contains the name of the Property being referenced and
 is undefined ().

If the Property is Simple, is undefined ().

If the Property is Numbered, is an integer vector of the same length
as the rank of the property (as implied by the result of the function) that
identifies a single element of the Property whose value is to be obtained. In this case,
must be scalar.

If the Property is Keyed, is a vector containing the arrays that were
specified within the square brackets in the reference expression. Specifically,
 will contain one more elements than the number of semi-colon (;)
separators.

 Dyalog APL/W Version 11 Release Notes 104

PropertySet Function Syntax
PropertySet Syntax:

The name of the PropertySet function must be , but is case-independent. For
example, , , and are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.

 is an instance of the internal class PropertyArguments.

In all cases, contains the name of the Property being referenced and
 contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, is undefined ().

If the Property is Numbered, is an integer vector of the same length
as the rank of the property (as implied by the result of the function) that
identifies a single element of the Property whose value is to be set.

If the Property is Keyed, is a vector containing the arrays that were
specified within the square brackets in the assignment expression. Specifically,
 will contain one fewer elements than, the number of semi-colon (;)
separators.

 Chapter 2 Object Oriented Programing 105

PropertyShape Function Syntax

The name of the PropertyShape function must be , but is case-independent. For
example, , , and are all valid names for the
PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.

The PropertyShape function must be niladic or monadic and must return a result.

If monadic, is an instance of the internal class PropertyArguments.
contains the name of the Property being referenced and and
are undefined ().

The result must be an integer vector or scalar that specifies the of the Property.
Each element of specifies the length of the corresponding dimension of the Property.
Otherwise, the reference or assignment to the Property will fail with .

Note that the result is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its dimensions.
If not, the reference or assignment to the Property will fail with or
..

 Dyalog APL/W Version 11 Release Notes 106

 107

C H A P T E R 3

Using Classes with the Dyalog GUI and .Net

Using the Dyalog GUI
With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI
objects as Instances of built-in (GUI) Classes. This approach supplements (but does not
replace) the use of , and so forth.

To create a GUI object using , the Class is given as the GUI Object name and the
Constructor Argument as a vector of (Property Name / Property Value) pairs. For
example, to create a Form:

Notice however that only perfectly formed name/value pairs are accepted. The highly
flexible syntax for specifying Properties by position and omitting levels of enclosure,
that is supported by and , is not provided with .

Naturally, you may reference and assign Properties in the same way as for objects
created using :

Callbacks to regular defined finctions in the Root or in another space, work in the same
way too. If function merely displays its argument:

Note that the first item in the event message is a ref to the Instance of the Form.

 Dyalog APL/W Version 11 Release Notes 108

To create a control such as a Button, it is only necessary to run inside a ref to the
appropriate parent object. For example:

As illustrated in this example, it is not necessary to assign the resulting Button Instance
to a name inside the Form (in this case). However, it is a good idea to do so so that
refs to Instances of controls are expunged when the parent object is expunged. In the
example above, expunging will not remove the Form from the screen because
still exists as a ref to the Button. So, the following is safer:

Or pehaps better still,

 Chapter 3 Using Classes with the Dyalog GUI and .Net 109

Temperature Converter Example

The following function illustrates this approach using the Temperature Converter
example descibed previously.

 Dyalog APL/W Version 11 Release Notes 110

For brevity, only a couple of the callback functions are shown here.

 Chapter 3 Using Classes with the Dyalog GUI and .Net 111

Writing Classes based on the Dyalog GUI
You may create user-defined Classes based upon Dyalog GUI objects as illustrated by
the Temperature Converter Class which is listed overleaf.

Temperature Converter Class
To base a Class on a Dyalog GUI object, you specify the name of the object as its Base
Class. For example, the Temperature Converter is based upon a Form:

Being based upon a top-level GUI object, the Temperature Converter may be used as
follows:

 Dyalog APL/W Version 11 Release Notes 112

Temperature Converter Example

 Chapter 3 Using Classes with the Dyalog GUI and .Net 113

Notice that the statement of its Constructor :

passes on the application-specific property list () given as its argument, but (in this
case) specifies Caption and Size as well. The order in which the properties are specified
in the call ensures that the former will act as a default (and be overriden by an
application-specific Caption requested in), whereas the specied Size of
will override whatever value of Size is requested by the host application in .

Other Instances can co-exist with the first:

 Dyalog APL/W Version 11 Release Notes 114

Dual Class Example
The Dual Class example is based upon the example used to illustrate how you may
build an ActiveX Control in Dyalog APL (see Chapter 13), but re-engineered as a
internal Dyalog APL Class. The full listing of the Dual Class script is provided
overleaf.

This version of Dual is based upon a SubForm:

The Dual Control requires a GUI parent but several Instances can co-exist, quite
independently, in the same parent.

For example, function creates a Form and 3 Instances of Dual; one to convert
Centigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to
convert centimetres to inches.

 Chapter 3 Using Classes with the Dyalog GUI and .Net 115

Dual's Constructor first splits its constructor arguments into those that apply to
the Dual Class itself, and those that apply to the SubForm. Its
 statement then passes these on to the Base
Constructor, together with an appropriate setting for EdgeStyle.

 Dyalog APL/W Version 11 Release Notes 116

Dual Class Example

 Chapter 3 Using Classes with the Dyalog GUI and .Net 117

 Dyalog APL/W Version 11 Release Notes 118

Writing Classes based on .Net Types
In Version 11.0 you may create user-defined Classes based upon .Net Classes. This
feature supercedes the NetType object through which this was achieved in previous
Versions of Dyalog APL.

To base a Class on a .Net Type, you simply specify the .Net Type as its Base Class.
However, you must also specify the .Net search path with one or more
statements.

For example, the following Class called derives from the .Net Type
GregorianCalendar which is located in the System.Globalization .Net namespace.

Exporting the Class
Unlike other Classes, a Class that derives from a .Net Type must be exported to a .Net
Assembly before it can be used. It must be turned into a fully fledged .Net Type before
you can access it through .Net.

You may either export your Class (or Classes) to a named Assembly file (DLL) on
disk, or you may take advantage of the new Version 11.0 feature and export it to
memory. This is done using the Export to Memory menu item on the Session File
menu. Export to Memory builds a temporary in-memory .Net Assembly and is intended
to speed the development cycle. Note however that in order to use the Class in a live
application, it will be necessary to save it to file.

Using the Class
If you have exported the Class to a Microsoft .Net Assembly (dll), you must specify the
correct .Net search path to locate the file using .

However, if you have exported the Class to memory (using Export to Memory), it is not
necessary to set .

 Chapter 3 Using Classes with the Dyalog GUI and .Net 119

Example of a Class based on a .Net Type
The following example illustrates an APL Class that is based upon the .Net Type
MailMessage.

The Class adds a method to the basic
System.Web.Mail.MailMessage Type. sends a separate message to each
of the recipients in the semi-colon separated address list. The result is the number of
recipients.

To use the Class, you must first export it as a .Net Assembly (in this case, using the
Export to Memory menu item on the Session File menu).

 Dyalog APL/W Version 11 Release Notes 120

Note that when using a Class that has been exported to memory, it is not necessary to
set .

The following points are noteworthy:

1. The statement in function defines the signature
of the method. It specifies that MultiSend takes no argument and returns a
result of Type Int32 (which will be resolved to System.Int32 via)

2. Of the two statements, the first one is required to resolve the
reference to Int32 to System.Int32.

3. The second statement is required to resolve the references to
MailMessage (in the statement) and SmtpMail (in).

 Chapter 3 Using Classes with the Dyalog GUI and .Net 121

Browsing Classes
Classes are represented by icons. The picture below shows 3 classes: ,
 and .

If you open Class nodes in the left-hand pane, the Explorer shows the Class hierarchy.
In this example, is based upon which in turn is based
upon .

 Dyalog APL/W Version 11 Release Notes 122

Browsing Class Scripts
Selecting in the left-hand pane brings up its Class Script in the
right-hand pane.

 Chapter 3 Using Classes with the Dyalog GUI and .Net 123

… and selecting in the left-hand pane brings up the Class Script for .

 Dyalog APL/W Version 11 Release Notes 124

… and finally, selecting in the left-hand pane brings up the Class Script for
.

 125

C H A P T E R 4

Language Enhancements

New and Improved Primitive Functions & Operators
New Primitive Functions & Operators

 Index

 Index with Axes

 Power Operator

Improved Primitive Functions & Operators

 And, Lowest
Common Multiple

 Or, Greatest
Common Divisor

 Dyalog APL/W Version 11 Release Notes 126

And, Lowest Common Multiple:
Case 1: and are boolean

. is boolean is determined as follows:

Note that the ASCII caret (^) will also be interpreted as an APL And ().

Example

Case 2: and are numeric (non-boolean)

 is the lowest common multiple of and .

Example

 Chapter 4: Language Enhancements 127

Or, Greatest Common Divisor:
Case 1: and are boolean

 R is boolean and is determined as follows:

Example

Case 2: and are numeric (non-boolean)

R is the Greatest Common Divisor of and .

Example

 Dyalog APL/W Version 11 Release Notes 128

Index:

Dyadic case
 must be a scalar or vector of depth of integers each . may be any array. In
general, the result is similar to that obtained by square-bracket indexing in that:

The length of left argument must be equal to the rank of right argument .

Note that in common with square-bracket indexing, items of the left argument may
be of any rank and that the shape of the result is the concatenation of the shapes of the
items of the left argument:

Index is sometimes referred to as squad indexing.

Note that index may be used with selective specification.
 is an implicit argument of index.

Examples

 Chapter 4: Language Enhancements 129

Monadic case
If is an array, is returned.

If is a ref to an instance of a Class with a Default property, all elements of the Default
property are returned. For example, if is the default property of , and
 is an Instance of , then by definition:

Version 11.0 issues a if the Default Property is Keyed, because in this
case APL has no way to determine the list of all the elements. A future version will
probably introduce a way for a class to define an ordered "key set" for a Keyed
property, at which point monadic squad will be extended to return the corresponding
elements.

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic) as opposed to functions that
operate on the values of the index set (functions such as), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to the
PropertyGet and PropertySet functions is the same as the set of functions that applies to
selective specification.

If for example, is an Instance of a Class with a Default Numbered
Property, the expression:

would only call the PropertyGet function (for) once, to get the value of the
last element.

 Dyalog APL/W Version 11 Release Notes 130

Note that similarly, the expression

would call the PropertyGet function 10000 times, on repeated indices if
has less than 10000 elements. The deferral of access function calls is intended to be an
optimisation, but can have the opposite effect. You can avoid unnecessary repetitive
calls by assigning the result of to a temporary variable.

Index with Axes:
 must be a scalar or vector of depth of integers each . may be any array.
is a simple scalar of vector specifying axes of . The length of must be the same as
the length of :

In general, the result is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

Note that index with axis may be used with selective specification. is an implicit
argument of index with axis..

Examples

 Chapter 4: Language Enhancements 131

 Dyalog APL/W Version 11 Release Notes 132

Power Operator:
If right operand is a numeric integer scalar, power applies its left operand function f
cumulatively times to its argument. In particular, may be boolean 0 or 1 for
conditional function application.

If right operand is a scalar-boolean-returning dyadic function, then left operand
function is applied repeatedly until or until a strong interrupt occurs. In
particular, if is or , the result is sometimes termed a fixpoint of .

If a left argument is present, it is bound as left argument to left operand function :

A negative right operand applies the inverse of the operand function , | times.
In this case, may be a primitive function or an expression of primitive functions
combined with primitive operators:

 compose
 each
 outer product
 commute
 axis
 scan
 power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument generates .

 Chapter 4: Language Enhancements 133

Examples

 Dyalog APL/W Version 11 Release Notes 134

New and Improved System Functions & Commands
New System Functions & Commands

 Base Class

 Class

 Display Form

 Fix Script

 Instances

 New Instance

 Source

 This Space

Improved System Functions & Commands

 Edit Object

 Name Class

 Name List

 Print Precision

 Window Expose

 Edit Object

 Chapter 4: Language Enhancements 135

Base Class:
 is used to access the base class implementation of the name specified by .

 must be the name of a Public member (Method, Field or Property) that is provided by
the Base Class of the current Class or Instance.

 is typically used to call a method in the Base Class which has been superseded
by a Method in the current Class.

Note that is special syntax and any direct reference to on its own or
in any other context, is meaningless and causes .

In the following example, Class derives from Class and
supersedes its method. calls the method
in its Base Class , via .

 Dyalog APL/W Version 11 Release Notes 136

Class:
Monadic Case
Monadic returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by .

 must be a reference to a Class or to an Instance of a Class.

 is a vector or vectors whose items represent nodes in the Class hierarchy of . Each
item of is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1
This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

 (derived from)
 (derived from)

 Chapter 4: Language Enhancements 137

Example 2
The Penguin Class example (see page 76) illustrates the use of Interfaces.
In this case, the Class derives from (as above) but additionally
supports the and Interfaces, thereby inheriting
members from both.

Dyadic Case
If is specified, must be a reference to an Instance of a Class and is a reference to
an Interface that is supported by Instance or to a Class upon which Instance is
based.

In this case, is a reference to the implementation of Interface by Instance , or to
the implementation of (Base) Class by Instance ,and is used as a cast in order to
access members of that correspond to members of Interface of (Base) Class .

Example 1:
Once again, the Penguin Class example (see page 76) is used to illustrate the use of
Interfaces.

 Dyalog APL/W Version 11 Release Notes 138

Example 2:
This example illustrates the use of dyadic to cast an Instance to a lower Class
and thereby access a member in the lower Class that has been superseded by another
Class higher in the tree.

Note that the method invoked above is the method defined by Class
, which supersedes the methods of sub-classes
and .

You may use a cast to access the (superseded) method in the sub-classes
 and .

 Chapter 4: Language Enhancements 139

Display Form:
 sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

 must be a simple character array that specifies the display form of a namespace. If
defined, this array will be returned by the format functions and instead of the
default for the object in question. This also applies to the string that is displayed when
the name is referenced but not assigned (the default display).

The result is the previous value of the Display Form which initially is .

Notice that will accept any character array, but always returns a matrix.

 Dyalog APL/W Version 11 Release Notes 140

Note that defines the Display Form statically, rather than dynamically.

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

 Chapter 4: Language Enhancements 141

It is possible to set the Display Form for the Root and for

Note that applies directly to the object in question and is not automatically applied
in a hierarchical fashion.

 Dyalog APL/W Version 11 Release Notes 142

Edit Object:
 invokes the Editor. is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument is a character scalar or character vector with as many elements
as there are names in . Each element of specifies the type of the corresponding
(new) object named in , where :

 function/operator

 simple character vector

 vector of character vectors

 character matrix

 Namespace script

 Class script

 Interface

If an object named in already exists, the corresponding type specification in is
ignored.

If is called from the Session, it opens Edit windows for the object(s) named in
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by , but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using .

If is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, and in Dyalog APL for DOS/386, the Edit windows are
automatically displayed in "full-screen" mode (ZOOMED). In all implementations, the
user is restricted to those windows named in . The user may not skip to the Session
even though the Session may be visible

 terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been changed, and has the same structure as .

 Chapter 4: Language Enhancements 143

Fix Script:
 fixes a Class from the script specified by .

 must be a vector of character vectors (scalars) that contains a well-formed Class
script. If so, is a reference to the new Class fixed by .

The Class specified by may be named or unnamed.

If specified, must be a numeric scalar numeric. If is omitted or non-zero, and the
Class script specifies a name (for the Class), establishes that Class in the
workspace.

If is or the Class specified by is unnamed, the Class is not established per se,
although it will exist for as long as a reference to it exists.

In the first example, the Class specified by is named () but the result of
 is discarded. The end-result is that is established in the workspace as
a Class.

In the second example, the Class specified by is named () and the result of
 is assigned to a different name (). The end-result is that a Class named
 is established in the workspace, and is a reference to it.

In the third example, the left-argument of causes the named Class to be
visible only via the reference to it (). It is there, but hidden.

 Dyalog APL/W Version 11 Release Notes 144

The final example illustrates the use of un-named Classes.

 Chapter 4: Language Enhancements 145

Instances:
 returns a list all the current instances of the Class specified by .

 must be a reference to a Class.
 is a vector of references to all existing Instances of Class .

Examples
This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

 (derived from)
 (derived from)

 Dyalog APL/W Version 11 Release Notes 146

Name Classification:
 must be a simple character scalar, vector, matrix ,or vector of vectors that specifies a
list of names. is a simple numeric vector containing one element per name in .

Each element of is the name class of the active referent to the object named in .

If is simple, a name class may be:

Name Class Description

 invalid name

 unused name

 Label

 Variable

 Function

 Operator

 Object (GUI, namespace, COM, .Net)

 Chapter 4: Language Enhancements 147

If is nested, a more precise analysis of name class is obtained whereby different
types of functions (primitive, traditional defined functions, D-fns) are identified by a
decimal extension. For example, defined functions have name class 3.1, D-fns have
name class 3.2, and so forth. The complete set of name classification is as follows:

 Array (2) Functions (3) Operators (4) Namespaces (9)

n.1 Variable Traditional Traditional Created by
n.2 Field D-fns D-ops Instance
n.3 Property Derived

Primitive

n.4 Class
n.5 N/A Interface
n.6 External

Shared
External External Class

n.7 External Interface

In addition, values in are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

Variable (Name-Class 2.1)
Conventional APL arrays have name-class 2.1.

 Dyalog APL/W Version 11 Release Notes 148

Field (Name-Class 2.2)
Fields defined by APL Classes have name-class 2.2.

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

Note that an internal Method sees both Public and Private Fields in the Class Instance.
However, when viewed from outside the instance, only public fields are visible

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if is executed inside
this space:

Note that the names of Fields are reported as being unused if the argument to is
simple.

 Chapter 4: Language Enhancements 149

Property (Name-Class 2.3)
Properties defined by APL Classes have name-class 2.3.

The name-class of a Property, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.3.

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties are
visible

 Dyalog APL/W Version 11 Release Notes 150

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if is executed inside
this space:

Note that the names of Properties are reported as being unused if the argument to
is simple.

External Properties (Name-Class 2.6)
Properties exposed by external objects (.Net and COM and the APL GUI) have name-
class .

Note that the names of such Properties are reported as being unused if the argument to
 is simple.

 Chapter 4: Language Enhancements 151

Defined Functions (Name-Class 3.1)
Traditional APL defined functions have name-class 3.1.

Note that a function that is simply cloned from a defined function by assignment
retains its name-class.

Whereas, the name of a function that amalgamates a defined function with any other
functions has the name-class of a Derived Function, i.e. 3.3.

 Dyalog APL/W Version 11 Release Notes 152

D-Fns (Name-Class 3.2)
D-Fns (Dynamic Functions) have name-class 3.2

Derived Functions (Name-Class 3.3)
Derived Functions and functions created by naming a Primitive function have name-
class 3.3.

Note that a function that is simply cloned from a defined function by assignment
retains its name-class. Whereas, the name of a function that amalgamates a defined
function with any other functions has the name-class of a Derived Function, i.e. 3.3.

 Chapter 4: Language Enhancements 153

External Functions (Name-Class 3.6)
Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class . Methods exposed by External Functions created using and all
have name-class .

 Dyalog APL/W Version 11 Release Notes 154

Operators (Name-Class 4.1)
Traditional Defined Operators have name-class 4.1.

D-Ops (Name-Class 4.2
D-Ops (Dynamic Operators) have name-class 4.2.

External Events (Name-Class 8.6)
Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-class
.

 Chapter 4: Language Enhancements 155

Namespaces (Name-Class 9.1)
Plain namespaces created using have name-class 9.1.

Note however that a namespace created by cloning, where the right argument to is
a of a namespace, retains the name-class of the original space.

The Name-Class of .Net namespaces (visible through) is also 9.1

Instances (Name-Class 9.2)

Instances of Classes created using , and GUI objects created using all have
name-class 9.2.

 Dyalog APL/W Version 11 Release Notes 156

Instances of COM Objects whether created using or also have name-class
9.2.

The same is true of Instances of .Net Classes (Types) whether created using or
.

Note that if you remove the GUI component of a GUI object, using the Detach method,
it reverts to a plain namespace.

Correspondingly, if you attach a GUI component to a plain namespace using the
monadic form of , it morphs into a GUI object

 Chapter 4: Language Enhancements 157

Classes (Name-Class 9.4)
Classes created using the editor or have name-class 9.4.

Note that the name of the Class is visible to a Public Method in that Class, or an
Instance of that Class.

Interfaces (Name-Class 9.5)
Interfaces, defined by clauses, have name-
class 9.5.

 Dyalog APL/W Version 11 Release Notes 158

External Classes (Name-Class 9.6)
External Classes (Types) .exposed by .Net have name-class 9.6.

Note that referencing a .Net class (type) with , fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the class when the name is next used.

External Interfaces (Name-Class 9.7)
External Interfaces exposed by .Net have name-class 9.7.

Note that referencing a .Net Interface with , fixes the name of that Interface in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the Interface when the name is next used.

 Chapter 4: Language Enhancements 159

New Instance:
 creates a new instance of the Class or .Net Type specified by .

 must be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a
.Net Type, or a character vector containing the name of a Dyalog GUI object. The
second item, if specified, contains the argument to be supplied to the Class or Type
Constructor.

The result is a reference to a new instance of Class or Type .

Class Example

If is called with just a Class reference (i.e. without parameters for the
Constructor), the default constructor will be called. A default constructor is defined by
a niladic function with the attribute. For example,
the Class may be redefined as:

 Dyalog APL/W Version 11 Release Notes 160

.Net Examples

Note that .Net Types are accessed as follows.

If the name specified by the first item of would otherwise generate a
, and has been set, APL attempts to load the Type specified
by from the .Net assemblies (DLLs) specified in If successful, the name
specified by is entered into the SYMBOL TABLE with a name-class of .
Subsequent references to that symbol (in this case) are resolved directly
and do not involve any assembly searching.

Name List:
 must be a simple numeric scalar or vector containing one or more of the values for
name-class See also the system function .

 is optional. If present, it must be a simple character scalar or vector. is a list of the
names of active objects whose name-class is included in in standard sorted order.

If any element of is negative, is a vector of character vectors. Otherwise, is
simple character matrix.

Furthermore, if is being evaluated inside the namespace associated with a Class or
an Instance of a Class, and any element of is negative, includes the Public names
exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If is supplied, contains only those names which begin with any character of .
Standard sorted order is the collation order of .

 Chapter 4: Language Enhancements 161

If an element of is an integer, the names of all of the corresponding sub-name-classes
are included in . For example, if contains the value 2, the names of all variables
(name-class 2.1), fields (2.2), properties (2.3) and external or shared variables (2.6) are
obtained. Otherwise, only the names of members of the corresponding sub-name-class
are obtained.

Examples:

 can also be used to explore Dyalog GUI Objects, .Net types and COM objects.

Dyalog GUI Objects
 may be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

 Dyalog APL/W Version 11 Release Notes 162

.Net Classes (Types)
 can be used to explore .Net types.

When a reference is made to an undefined name, and is set, APL attempts to
load the Type from the appropriate .Net Assemblies. If successful, the name is entered
into the symbol table with name-class 9.6.

The names of the Properties and Methods of a .Net Type may then be obtained using
.

In fact it is not necessary to make a separate reference first, because the expression
 (where is a .Net Type) is itself a reference to Type. So, (with
 still set to):

 Chapter 4: Language Enhancements 163

Another use for is to examine .Net enumerations. For example:

COM Objects
Once a reference to a COM object has been obtained, may be used to obtain lists
of its Methods, Properties and Events.

 Dyalog APL/W Version 11 Release Notes 164

Source:
 returns the script that defines the Class .

 must be a reference to a Class.
 is a vector of character vectors containing the script that was used to define Class .

 Chapter 4: Language Enhancements 165

This Space:
 returns a reference to the current namespace, i.e. to the space in which it is
referenced.

If is a reference to any object whose name-class is , then:

Examples

An Instance may use to obtain a reference to its own Class:

or a function (such as a Constructor or Destructor) may identify or enumerate all other
Instances of the same Class:

 Dyalog APL/W Version 11 Release Notes 166

Window Expose:
 is a system variable that determines:

a) whether or not the names of properties, methods and events provided by a
Dyalog APL GUI object are exposed.

b) certain aspects of behaviour of .Net and COM objects. See External Object
behaviour.

The permitted values of are 0, 1, or 3. Considered as a sum of bit flags, the first bit
in specifies (a), and the second bit specifies (b).

If is 1 (1st bit is set), the names of properties, methods and events are exposed as
reserved names in GUI namespaces and can be accessed directly by name. This means
that the same names may not be used for global variables in GUI namespaces.

If is 0, these names are hidden and may only be accessed indirectly using and
.

If is 3 (2nd bit is also set) COM and .Net objects adopt the Version 11 behaviour,
as opposed to the behaviour in previous versions of Dyalog APL.

Note that it is the value of in the object itself, rather than the value of in the
calling environment, that determines its behaviour.

The value of in a clear workspace is defined by the default_wx parameter (see
User Guide) which itself defaults to 3.

 has namespace scope and may be localised in a function header. This allows you
to create a utility namespace or utility function in which the exposure of objects is
known and determined, regardless of its global value in the workspace.

 Chapter 4: Language Enhancements 167

List Classes:
This command lists the names of APL Classes in the active workspace.

Example:

 Dyalog APL/W Version 11 Release Notes 168

Edit Object:
 invokes the Dyalog APL editor and opens an Edit window for each of the objects
specified in .

If a name specifies a new symbol it is taken to be a function/operator. However, if a
name is localised in a suspended function/operator but is otherwise undefined, it is
assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an
appropriate symbol as follows :

 function/operator

 simple character vector

 vector of character vectors

 character matrix

 Namespace script

 Class script

 Interface

The first object named becomes the top window on the stack. See User Guide for
details. ignores names which specify GUI objects.

Examples

 Chapter 4: Language Enhancements 169

Function Declaration Statements
Certain statements that are used to identify the characteristics of a function in some
way. These statements are not executable statements and may appear anywhere in the
body of the function.

Access Statement

The :Access statement is used to specify characteristics for functions that represent
Methods in classes (see chapter 3). It is also applicable to Classes and Properties.

Element Description

 Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The default
is .

 Specifies whether the method runs in the Class or
Instance. The default is .

 Specifies that the method is exported as a web method.
This applies only to a Class that implements a Web
Service.

 Applies only to an Instance Method and specifies that the
Method may be overridden by a Method in a higher
Class. See below.

 Applies only to an Instance Method and specifies that the
Method overrides the corresponding Overridable Method
defined in the Base Class. See below

 Dyalog APL/W Version 11 Release Notes 170

Overridable/Override
Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being is replaced in situ (i.e. within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the keyword. For further information, see Superseding Base
Class Methods.

WebMethod
Note that is equivalent to:

Attribute Statement

The :Attribute statement is used to attach .Net Attributes to a Method (or Class).

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes are
saved with the metadata of Dyalog APL .NET assemblies.

Element Description

 The name of a .Net attribute

 Optional arguments for the Attribute constructor

Examples

 Chapter 4: Language Enhancements 171

Implements Statement

The :Implements statement identifies the function to be one of the following special
types.

Element Description

 Specifies that the function is a class constructor.

 Specifies that the Base Constructor be called with the result of
the expression as its argument.

 Specifies that the method is a Class Destructor.

 Specifies that the function implements the Method
 whose syntax is specified by Interface
.

 Identifies the function as a Trigger Function which is activated
by changes to variables , , etc. (see Triggers).

Signature Statement

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify a
different result type.

Element Description

 Specifies the data type for the result of the
method

 Specifies the name of the exported method.

 Specifies the data type of the nth parameter

 Specifies the name of the nth parameter

 Dyalog APL/W Version 11 Release Notes 172

Argument and result data types are identified by the names of .Net Types which are
defined in the .Net Assemblies specified by or by a statement.

Examples
In the following examples, it is assumed that the .Net Search Path (defined by
or includes .

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

The next statement specifes that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters.
The first parameter is of type System.Double and is named Dimension. The
second is of type System.Object and is named Arg1. The third is of type
System.Object and is named Arg2.

The next statement specifes that the function is exported as a method named
IndexGen whose result is an array of type System.Int32 and which takes 2
parameters. The first parameter is of type System.Int32 and is named N. The
second is of type System.Int32 and is named Origin.

The next block of ststements specifies that the function is exported as a method named
Mix. The method has 4 different signatures; i.e. it may be called with 4 different
parameter/result combinations.

 Chapter 4: Language Enhancements 173

Triggers
Triggers provide the ability to have a function called automatically whenever a variable
or a Field is assigned. Triggers are actioned by all forms of assignment (), but only by
assignment.

Triggers are designed to allow a class to perform some action when a field is modified
– without having to turn the field into a property and use the property setter function to
achieve this. Avoiding the use of a property allows the full use of the APL language to
manipulate data in a field, without having to copy field data in and out of the class
through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger from
a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the Trigger
Function. The name of a variable or Field which has an associated Trigger Function is
termed a Trigger.

A function is declared as aTrigger function by including the statement:

where , etc are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
. This Class has 3 Fields:

Member Description

 Name of the Trigger whose change in value has
caused the Trigger Function to be invoked.

 The newly assigned value of the Trigger

 The previous value of the Trigger. If the Trigger was
not previously defined, a reference to this Field causes
a .

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The precise
timing is not guaranteed and may not be consistent because internal workspace
management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

 Dyalog APL/W Version 11 Release Notes 174

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be
re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this
will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix the
Trigger function in the function in which the Trigger is localised; for example:

Example
The following function displays information when the value of variables or
changes.

Note that on the very first assignment to , when the variable was previously
undefined, is a .

 Chapter 4: Language Enhancements 175

Note that Trigger functions are actioned only by assignment, so changing to a Form
using does not invoke .

However, the connection (between and) remains and the Trigger Function will
be invoked if and when the Trigger is re-assigned.

 Dyalog APL/W Version 11 Release Notes 176

 177

Symbolic Index
....................... See access statement
See class statement
 See endclass statement
 See endnamespace
... See endproperty statement
 See field statement
....................See include statement
.......See implements statement
 See interface statement
 See namespace statement
See property statement
 See base class
 ... See class
 See display form
..See fix script
See instances
 ...See name class
....................................See new instance
 ..See name list
 See print precision
..See source
See this space
See window expose
.............................. See list classes
 ..See edit object

 Dyalog APL/W Version 11 Release Notes 178

Alphabetic Index
A
access statement58, 101, 169
Access Statement ... 98
and boolean function 126
aplcore ... 26
ASP.NET... 24
assignment

re-assignment ... 14
attribute statement 97, 170
autocomplete

common key... 17

B
base class 33, 35, 95, 135
base constructor.. 45
Boolean functions

and (conjunction).................................... 126
or (inclusive disjunction) 127

C
class (system function) 136
classes

base class 33, 35, 95, 135
casting.. 137
class system function 136
constructors....................... 36, 37, 43, 45, 48
defining.. 33
derived from .Net Type............................. 35
derived from GUI 36
destructor ... 43, 50
display form ... 139
editing.. 34
external interfaces................................... 158
fields ...52, 53, 148
fix script... 143
including namespaces 77
inheritance.. 33, 35
instances................................ 33, 36, 50, 145
introduction.. 33
list classes .. 167
members... 52
methods.. 52, 58

name-class...................................... 157, 158
new instance...159
properties52, 62, 101, 149
script ..33
this space..165
using statement ...96

Classes
browsing...121

classification of names................................146
common key

autocomplete ..17
Compatibility ...1
component files

compatibility ..1
ComponentFile Class Example69
conjunction...See and
constructors..36

base ..45
introduction ..37
monadic..48
niladic .. 41, 47
overloading...38

copy
dependant objects11
refs ...10

COPY system command...............................28

D
default constructor 41, 43
default property 68, 129
denormal numbers ..8
destructor ... 43, 50
disjunction.. See or
display form ...139
dyadic primitive functions

and ...126
greatest common divisor127
index function...128
lowest common multiple.........................126
or ...127

Dylan
Bob ..12

 Alphabetic Index 179

E
editing APL objects.............................142, 168
editor ... 142
endproperty statement 101
export to memory....................................... 118

session file menu...................................... 20
exposing properties 166
external interfaces 158

F
fields... 52, 53, 148

initialising.. 54
private.. 55
public... 53
shared .. 56
trigger .. 57

fix script ...33, 143
fonts .. 16

G
greatest common divisor............................. 127

I
implements statement................................. 171

constructor ... 45
destructor ... 50
method... 75
trigger .. 173

include statement ... 77
index

with axes.. 130
index function .. 128
inheritance ..33, 35
initialising fields .. 54
instances 36, 50, 145, 155

empty arrays of42, 43
interfaces 75, 76, 95, 157
Interoperability .. 1
isolation mode.. 19
Item property ... 22

K
keyboard.. 16
keyed property ..71, 74

L
list classes .. 167
list names in a class 160
logical conjunction See and
logical disjunction See or
logical operations See Boolean functions
lowest common multiple............................. 126

M
maxws parameter ... 5
methods ... 52, 58

instance.. 58, 60
private.. 58
public... 58
shared .. 58, 59
superseding in the base class..................... 61

N
name classifications.................................... 146
name list .. 160
namelist ... 38
namespace script .. 89
namespace statement 89, 94
namespaces

including in classes................................... 77
this space.. 165

Net Framework
configuring for ... 24

new instance... 36, 159
niladic constructor41, 43, 47
number conversion ... 8
numbered

property.. 68
numbered property 67

O
or boolean function..................................... 127
overridable..58, 61, 98
override.. 61, 98

P
PassSingletonAsScalar 32
Penguin Class example................................. 76
power operator ... 132
primitive operators

180 Alphabetic Index

power ... 132
print precision ..8
properties 52, 62, 149, 150

default .. 68, 101
instance.......................................63, 64, 101
keyed 62, 71, 74, 101
numbered 62, 66, 67, 68, 101, 103, 104
private.. 101
properetyget function................................ 66
propertyarguments class...............64, 66, 102
propertyget function 103, 104
propertyget Function............................... 129
propertyset function.......................... 66, 129
propertyshape function 66, 105
public ... 101
referring to GUI Objects 15
shared... 65, 101
simple 62, 63, 64, 65, 101, 103, 104

property statement 101
propertyarguments class64, 66, 102
propertyget function66, 103, 104
propertyset function...................................... 66
propertyshape function 66
prototypes

deferred generation................................... 12

Q
quad indexing... 130

R
r operator..16
re-assignment ...14

S
squad indexing ...128
system error codes ..27
system error dialog 26, 28
system exceptions...27

T
this space..165
trigger fields ...57
triggerarguments class173
triggers...173

U
Using Classes 107, 111
using statement...96

V
Version 10.1.5 ..2

W
window expose..................................... 22, 166
workspace integrity check.............................26
workspace size ...5
workspaceloaded event31

